A.R. Not instruction brook

Tape Cartridge System

Guarantee

The equipment described herein is sold under the following guarantee:
Collins agrees to repair or replace, without charge, any equipment, parts, or accessories which are defective as to design, workmanship or material, and which are returned to Collins at its factory, transportation prepaid, provided
(a) Notice of the claimed defect is given Collins within one (1) year from date of delivery and goods are returned in accordance with Collins instructions.
(b) Equipment, accessories, tubes, and batteries not manufactured by Collins or from Collins designs are subject to only such adjustments as Collins may obtain from the supplier thereof.
(c) No equipment or accessory shall be deemed to be defective if, due to exposure or excessive moisture in the atmosphere or otherwise after delivery, it shall fail to operate in a normal or proper manner.
Collins further guarantees that any radio transmitter described herein will deliver full radio frequency power output at the antemna lead when connected to a suitable load, but such guarantee shall not be construed as a guarantee of any definite coverage or range of said apparatus.

The guarantee of these paragraphs is void if equipment is altered or repaired by others than Collins or its authorized service center.

No other warranties, expressed or implied, shall be applicable to any equipment sold hereunder, and the foregoing shall constitute the Buyer's sole right and remedy under the agreements in this paragraph contained. In no event shall Collins have any liability for consequential damages, or for loss, damage or expense directly or indirectly arising from the use of the products, or any inability to use them either separately or in combination with other equipment or materials, or from any other cause.

How to Return Material or Equipment If, for any reason, you should wish to return material or equipment, whether under the guarantee

 or otherwise, you should notify us, giving full particulars including the details listed below, insofar as applicable. If the item is thought to be defective, such notice must give full information as to nature of defect and identification (including part number if possible) of part considered defective. (With respect to tubes we suggest that your adjustments can be speeded up if you give notice of defect directly to the tube manufacturer.) Upon receipt of such notice, Collins will promptly advise you respecting the return. Failure to secure our advice prior to the forwarding of the goods or failure to provide full particulars may cause unnecessary delay in the handling of your returned merchandise.ADDRESS:
Collins Radio Company
Service Division
Cedar Rapids, Iowa

INFORMATION NEEDED:

(A) Type number, name and serial number of equipment
(B) Date of delivery of equipment
(C) Date placed in service
(D) Number of hours of service
(E) Nature of trouble
(F) Cause of trouble if known
(G) Part number (9 or 10 digit number) and name of part thought to be causing trouble
(H) Item or symbol number of same obtained from parts list or schematic
(I) Collins number (and name) of unit subassemblies involved in trouble
(J) Remarks

How to Order Replacement Parts When ordering replacement parts, you should direct your

 order as indicated below and furnish the following information insofar as applicable. To enable us to give you better replacement service, please be sure to give us complete information.
ADDRESS:

Collins Radio Company
Service Division
Cedar Rapids, Iowa

INFORMATION NEEDED:
(A) Quantity required
(B) Collins part number (9 or 10 digit number) and description
(C) Item or symbol number obtained from parts list or schematic
(D) Collins type number, name and serial number of principal equipment
(E) Unit subassembly number (where applicable)

instruction book

Tape Cartridge System

This manual includes:
Tape Cartridge System
523-0756575
642A-2 Recorder/Playback Unit 523-0756576
216C-2 Recording Amplifier
523-0756578
Magnetic Tape Cartridges 523-0755296
313T-1/3/4 Remote Control Switching Units 523-0755297
©Collins Radio Company 1963

system instructions

Tape Cartridge System

table of contents

Section Page
1 GENERAL DESCRIPTION 1
1.1 Purpose of Instruction Book 1
1.2 Purpose of Equipment 1
1.3 Description of System Units 1
1.3.1 642A-2 Recorder/Playback Unit 1
1.3.2 216C-2 Recording Amplifier 2
1.3.3 Magnetic Tape Cartridges 2
1.3 .4 313T-1/3/4 Remote Control Switching Units 2
1.4 System Specifications 3
1.4.1 Physical 3
1.4.2 Electrical 3
1.4.3 Mechanical 3
2 INSTALLATION 4
2.1 Unpacking and Inspecting 4
2.2 Installation Procedures 4
2.2.1 General 4
2.2.2 642A-2 Internal Connections 4
2.2.3 Multiple 642A-2 Installation 4
2.2.4 External Cue Connections 4
2.2.5 642A-2/216C-2 Interconnection 4
2.2.6 Remote Control Switching Unit Installation 5
3 OPERATION 14
3.1 Operating Controls and Indicators 14
3.2 Operating Procedures 14
3.2.1 Recording 14
3.2.2 Playback 14
PRINCIPLES OF OPERATION 16
4.1 General 16
MAINTENANCE 17
5.1 System Trouble Shooting 17

list of illustrations

Figure Page
1-1 Tape Cartridge System (C754-22-P) 2
2-1 642A-2 Interconnection Diagram (C754-37-3) 5
2-2 313T-1 Remote Control Switching Unit, Installation Diagram (C754-11-4) 6
2-3 313T-3 Remote Control Switching Unit, Installation Diagram (C754-12-4) 7
2-4 31 TT-4 Remote Control Switching Unit, Installation Diagram (C754-10-5) 8
2-5 642A-2 Recorder/Playback Unit, Outline and Mounting Dimensions (C754-04-5) 9
2-6 216C-2 Recording Amplifier, Outline and Mounting Dimensions (C754-05-5) 10
2-7 313T-1 Remote Control Switching Unit, Outline and Mounting Dimensions (C754-01-4) 11
2-8 313T-3 Remote Control Switching Unit, Outline and Mounting Dimensions (C754-02-4) 12
2-9 313T-4 Remote Control Switching Unit, Outline and Mounting Dimensions (C754-03-4) 13
3-1 216C-2 Recording Amplifier, Operating Controls and Indicators (C754-61-P) 15
3-2 642A-2 Recorder/Playback Unit, Operating Controls and Indicators (C754-60-P) 15
4-1 Tape Cartridge System, Block Diagram (C754-17-3) 16
list of tables
Table
Page
1-1 Tape Cartridge System Units 1
3-1 Operating Controls and Indicators on the 642A-2 Recorder/Playback Unit 14
3-2 Operating Controls and Indicators on the 216C-2 Recording Amplifier 14
5-1 System Trouble Shooting 17

general description

1.1 Purpose of Instruction Book.

This system instruction book contains directions for installing, operating, and trouble shooting the Collins Tape Cartridge System. More detailed information about the units that make up the system is contained in the unit instructions listed in table 1-1. These unit instructions are bound at the rear of this system instruction book.

1.2 Purpose of Equipment.

The Tape Cartridge System, shown in figure 1-1, provides complete facilities for recording and playback of program material on an endless magnetic tape that is enclosed in a plastic cartridge. No threading, cuing, or rewinding of tapes is required with this system. After playback, the tape is stopped automatically at the cued position by a stop-cue tone that is recorded on one track of a double-track tape at the same time program material is recorded on the other track. Other external-cue tones may be placed on the tape cue track during recording to cue miscellaneous external equipment during playback.

Recording audio inputs are provided for either 600ohm balanced line or a 250 -ohm microphone, or the two inputs may be mixed. The system may be controlled either from the front panel of the equipment or from any one of three types of remote switching units.

1.3 Description of System Units.

The units that make up the Tape Cartridge System are listed in table 1-1. These units are described briefly in the following paragraphs. For a more detailed description of each unit, refer to the applicable unit instructions listed in table 1-1.

1.3.1 642A-2 RECORDER/PLAYBACK UNIT.

The 642A-2 Recorder/Playback Unit contains the tape transport mechanism, magnetic recording/playback heads, program and cue amplifier modules, and most of the control circuits for the Tape Cartridge System. This unit may be used alone to provide playback facilities only.

TABLE 1-1. TAPE CARTRIDGE SYSTEM UNITS

UNIT.	UNIT PART NUMBER	UNIT INSTRUCTIONS PART NUMBER
642A-2 Recorder/Playback Unit	$522-3497-00$	$523-0756576$
$216 \mathrm{C}-2$ Recording Amplifier	$522-3496-00$	$523-0756578$
Magnetic Tape Cartridge	See table 1, unit instructions	$523-0755296$
$313 \mathrm{~T}-1$ Remote Control Switching Unit	$522-2550-00$	
$313 \mathrm{~T}-3$ Remote Control Switching Unit	$522-2551-00$	$523-0755297$
or	$522-2552-00$	$523-0755297$

Figure 1-1. Tape Cartridge System

Automatic switching circuits in the 642A-2 allow a number of units to be connected to the same output line. When one of the units is started, the outputs of all the others are automatically disconnected from the line. Any unit that is running when another unit is started will continue to rununtil it is stopped either automatically or manually. All input, output, and power connections to the 642A-2 Recorder/Playback Unit are made at the rear of the unit.

1.3.2 216C-2 RECORDING AMPLIFIER.

The 216C-2 Recording Amplifier is used with the 642A-2 Recorder/Playback Unit to provide facilities for recording pre-erased tape cartridges. This unit contains preamplifiers for 600 -ohm line and 250 -ohm microphone inputs, input level controls, and output amplifier. The two inputs may be mixed if desired. A VU meter on the front panel of the $216 \mathrm{C}-2$ indicates the recording level. This unit also contains record bias and cue-tone oscillators and amplifiers. The program, cue, and bias outputs from this unit are fed to the recording heads in the 642A-2 Recorder/ Playback Unit.

All interconnections between the 216C-2 and 642A-2 are made with a cable that is supplied with the $216 \mathrm{C}-2$.

All input, output, and power connections to the $216 \mathrm{C}-2$ Recording Amplifier are made at the rear of the unit.

1.3.3 MAGNETIC TAPE CARTRIDGES.

The magnetic tape cartridges used with the Tape Cartridge System are plastic containers that hold the magnetic tape that is being recorded or played back. These cartridges are available in 3 sizes with 17 lengths of preloaded tape, ranging in running time from 40 seconds to 31 minutes. Blank cartridges that may be loaded with tape are also available.

1.3.4 313T-1/3/4 REMOTE CONTROL SWITCHING UNITS.

The $313 \mathrm{~T}-1,313 \mathrm{~T}-3$, and $313 \mathrm{~T}-4$ Remote Control Switching Units may be used with the 642A-2 Recorder/ Playback Unit and 216C-2 Recording Amplifier to provide control of the start, stop, and record functions from the control console or some other remote point. The $313 \mathrm{~T}-1$ can control one $216 \mathrm{C}-2$ and one $642 \mathrm{~A}-2$. The 313T-3 can control three 642A-2's. The 313T-4 can control one 216C-2 and four 642A-2's.

1.4 System Specifications.

1.4.1 PHYSICAL.

installation

2.1 Unpacking and Inspecting.

Remove all packing material and carefully lift the units from their boxes. Check equipment and packing slips to be sure that all equipment is included. Visually inspect units for any apparent damage and for missing components. Check for proper operation of frontpanel controls. File any damage claims promptly with the transportation agency. If such claims are to be filed, keep all packing material.

2.2 Installation Procedures.

2.2.1 GENERAL.

Plan placement of equipment and wiring carefully before starting installation work. Be sure to shield all low-level audio cables; keep such wiring separated from power and control wiring.

Refer to figures 2-5 through 2-9 for outline and mounting dimensions of all units in the Tape Cartridge System.

2.2.2 642A-2 INTERNAL CONNECTIONS.

Check to see that the following cable connections are made in the 642A-2 Recorder/Playback Unit. All connectors on the $642 \mathrm{~A}-2$ chassis and modules are color coded with small color dots by the connectors. Join connectors coded with the same color dots with the connecting cables.

$$
\begin{aligned}
& \text { J102 to J201 - red dots } \\
& \text { J103 to J104 - yellow dots } \\
& \text { J105 to J301 - green dots } \\
& \text { J106 to J302 - white dots }
\end{aligned}
$$

2.2.3 MULTIPLE 642A-2 INSTALLATION.

A number of 642A-2 Recorder/Playback Units may be connected to the same $600-\mathrm{ohm}$ balanced output line. The interconnection of four typical units is shown in figure 2-1. With such interconnections, the output of only one unit can be connected to the output line at a time. If one unit is started while another is running, the output of the first unit is disconnected from the line, but that unit will continue to run until it is stopped either automatically or manually. The units may be started in any sequence.

The interconnections for a multiple 642A-2 installation may be generalized as follows:
a. Remove the jumper between terminals 13 and 14 on TB101 of all units.
b. Jumper terminals 10 and 13 on TB101 of all units.
c. Jumper terminals 9 and 14 on TB101 of unit 1. Leave terminal 11 on TB101 of unit 1 unconnected.
d. Interconnect all units with five wires. In each case, interconnect the terminals on TB101 as follows:

Unit N		Unit $\mathrm{N}+1$
8	to	9
12	to	11
14	to	14
15	to	15
16	to	16

e. Jumper terminals 8 and 12 on TB101 of the last unit.
f. Connect terminals 15 and 16 on TB101 of any unit to the output line.

2.2.4 EXTERNAL CUE CONNECTIONS.

External cue connections from the 642A-2 Recorder/ Playback Unit to external equipment are made at terminals 5,6 , and 7 of TB101 on the 642A-2. Two wires should be used to make these connections. If a "make" cue is desired, connect the wires to terminals 6 and 7. If a "break" cue is desired, connect the wires to terminals 5 and 6 .

If it is desired to have an external-cue tone on a tape in one unit start a tape in another unit, connect terminals 6 and 7 on unit N to terminals 3 and 4 on unit $\mathrm{N}+1$. When using several 642A-2's with such connections, remember that the tape that is to be started by an external-cue tone on the tape in unit N must be placed in unit $N+1$. In such installations, it will be helpful to number the units in some manner so that the tape to be started is placed in the correct unit.

2.2.5 642A-2/216C-2 INTERCONNECTION.

If the 642A-2 Recorder/Playback Unit and $216 \mathrm{C}-2$ Recording Amplifier are used together, connect J101 on the rear of the $642 \mathrm{~A}-2$ to J402 on the rear of the 216C-2. Use the interconnecting cable supplied with the 216C-2.

2.2.6 REMOTE CONTROL SWITCHING UNIT INSTALLATION.

Mount the remote control switching unit in the desired location by cutting a rectangular hole in the
mounting panel just large enough to accommodate the rear of the unit. Refer to figures 2-7 through 2-9. Insert the unit into place and secure it by tightening the two screws in the mounting brackets. Refer to figures 2-2 through 2-4 for unit interconnection data.

NOTE: REMOVE THE JUMPER BETWEEN TERMINALS 13 AND 14 OF ALL UNITS.

Figure 2-1. 642A-2 Interconnection Diagram

Figure 2-2. 313T-1 Remote Control Switching Unit, Installation Diagram

Figure 2-3. 313T-3 Remote Control Switching Unit, Installation Diagram

RECORDER / PLAYBACK UNITS 642A-2
Figure 2-4. 313T-4 Remote Control Switching Unit, Installation Diagram

PLaYback with ExTension
PLATES FOR RACK MOUNTNG

notes:

1. WEIGHT, APProx. 40LB

Figure 2-6. 216C-2 Recording Amplifier, Outline and Mounting Dimensions
-

TE50I $A N D$ TB502	
TERMINAL	FUNCTION
1	REMOTE START
2	REMOTE START
3	REMOTE SET
4	REMOTE SET
5	GROUND
6	REMOTE STOP
7	REMOTE STOP
8	READY LIGHT

Figure 2-7. 313T-1 Remote Control Switching Unit, Outline and Mounting Dimensions

TB6OI AND TB602	
TERMINAL	FUNCTION
1	REMOTE START NO. 2
2	REMOTE START NO. 2
3	REMOTE START NO. 1
4	REMOTE START NO. I
5	GROUND
6	REMOTE START NO. 3
7	REMOTE START NO. 3
8	SPARE

Figure 2-8. 313T-3 Remote Control Switching Unit, Outline and Mounting Dimensions
*

TB70I AND TB702	
TERMINAL	FUNCTION
1	REMOTE START NO. I
2	REMOTE START NO. 1
3	REMOTE SET
4	REMOTE SET
5	REMOTE START NO. 3
6	REMOTE START NO. 3
7	REMOTE START NO. 2
8	REMOTE START NO. 2
9	GROUND
10	REMOTE STOP
11	REMOTE STOP
12	READY LIGHT
13	REMOTE START NO. 4
14	REMOTE START NO. 4
15	SPARE
16	SPARE

Figure 2-9. 313T-4 Remote Control Switching Unit, Outline and Mounting Dimensions

operation

3.1 Operating Controls and Indicators.

Tables 3-1 and 3-2 list the functions of the various operating controls and indicators on the 642A-2 Recorder/Playback Unit and 216C-2 Recording Amplifier. Figures 3-1 and 3-2 show the location of the controls and indicators.

3.2 Operating Procedures.

3.2.1 RECORDING.

a. Press the POWER switches on both the $216 \mathrm{C}-2$ and $642 \mathrm{~A}-2$. Allow a 2 -minute warmup period.
b. Insert an erased tape cartridge into the right side of the slot in the 642A-2 until the READY indicator on this unit lights. This indicates that the cartridge is in the proper position.
c. Press the START switch on the 642A-2 and run several seconds of tape before starting recording. This will assure better seating of tape to the heads. Stop the tape by pressing the STOP switch on the 642A-2.
d. Press the RECORD switch on the 216C-2.
e. Adjust the MIC and LINE level controls on the $216 \mathrm{C}-2$ until the VU meter indicates 0 vu at normal recording peaks. If one of the inputs is not used, set the level control for that input fully counterclockwise.

TABLE 3-1
OPERATING CONTROLS AND INDICATORS ON THE 642A-2 RECORDER/PLAYBACK UNIT

CONTROL OR INDICATOR	FUNCTION
STOP/READY	Stops tape motion when pressed. Indicates that tape is ready to run when lighted.
START/RUN	Applies power to unit when pressed. Indicates that power is applied to unit when lighted. Starts tape motion when pressed. Indicates that tape is running when lighted.

TABLE 3-2
OPERATING CONTROLS AND INDICATORS ON THE 216C-2 RECORDING AMPLIFIER

CONTROL OR INDICATOR	FUNCTION
RECORD	Readies record circuits if pressed when tape is not tunning. Places external-cue tone on tape if pressed when tape is running. Indicates that tape is ready to record or recording when lighted.
MIC	Controls microphone input re- cording level.
VU meter	Indicates recording level. LINE POWERControls line input recording level. Applies power to unit when pressed. Indicates that power is applied to unit which lighted.

f. Press the START switch on the 642A-2. Recording begins when this switch is pressed. To record an external-cue tone while recording the program material, press the RECORD switch on the 216C-2. g. When the recording is completed, press the STOP switch on the 642A-2. If only one production is to be on the cartridge, press the START switch on the 642A-2 and allow the tape to run until it stops automatically. If more than one production is to be on the same cartridge, repeat steps d through for each production. When the final production is completed, press the START switch on the 642A-2 and allow the tape to run until it stops automatically.

3.2.2 PLAYBACK.

a. Press the POWER switch on the 642A-2. Allow a 2 -minute warmup period.
b. Insert a recorded tape cartridge into the right side of the slot in the 642A-2 until the READY indicator on this unit lights. This indicates that the cartridge is in the proper position.
c. Press the START switch on the 642A-2. When this switch is pressed, the tape will start to move
past the program and cue heads, and will continue to move until either the STOP switch on the 642A-2 is pressed or until the stop-cue tone is picked up by the cue head. To ensure that the tape is properly cued after each use, it is good practice to allow the tape to stop automatically.

CAUTION

Do not remote the tape cartridge while the tape is moving.

Figure 3-1. 216C-2 Recording Amplifier, Operating Controls and Indicators

TAPE CONTROLS

(4)

Figure 3-2. 642A-2 Recorder/Playback Unit, Operating Controls and Indicators

section 4

principles of operation

4.1 General.

Refer to figure 4-1, a block diagram of the Tape Cartridge System. Recording audio inputs are connected to the 216C-2 Recording Amplifier. The playback audio output is connected to the 642A-2 Recorder/ Playback Unit. These two main units are completely interconnected by a cable that connects to jacks at the rear of the units. The remote control switching units may be connected to these two units to control them from a remote location.

Automatic cuing of tapes used with the Tape Cartridge System is accomplished by recording cue tones and program material on separate tracks of a doubletrack tape. Two types of cue tones are used in the Tape Cartridge System.

One, a 1000 -cps tone, is used as a stop-cue tone. This tone is recorded automatically for about $1 / 2$ second at the moment recording of the program material begins. When this tone passes the cue head during playback, a relay is energized to stop the tape in the cued position just ahead of the start of the program material.

The other tone, a 150 -cps tone, is used as an externalcue tone to switch miscellaneous external equipment. This tone may be recorded at any time during the recording of program material. A typical application of this external-cue tone is automatic switching of a video slide projector during playback of recorded audio material. In installations with more than one recorder/playback unit, the external-cue tone may be used to automatically start one of the units immediately after the program material on another unit is completed.

The tape transport mechanism, located in the 642A-2 Recorder/Playback Unit, is driven by a synchronous motor that turns a flywheel and attached capstan. When the tape start circuits are energized, a rubber pressure roller presses the tape against the capstan, starting the tape moving past the recording/playback heads at a speed of $7-1 / 2$ inches per second.

Refer to the unit instructions listed in table 1-1 for more detailed principles of operation of each of the units that make up the Tape Cartridge Svistem.

Figure 4-1. Tape Cartridge System, Block Diagram

maintenance

5.1 System Trouble Shooting.

To isolate and remedy trouble that may occur in one of the units of the Tape Cartridge System, refer totable 5-1.

NOTE

Most of the symptoms listed in table 5-1 may also be caused by dirty, magnetized, or misaligned recording/playback heads or defective tape. Refer to section 5 in the 642A-2 Recorder/Playback Unit Instructions. Be sure that tape used is of good quality and in good condition.

TABLE 5-1. SYSTEM TROUBLE SHOOTING

SYMPTOM	PROBABLE CAUSE	REMEDY	
		CHECK	ADJUST
Unit will not operate - tube filaments not lighted	Fuse blown	Fuses	-
Abnormally low playback output level	Defective program amplifier	$\begin{aligned} & \text { V201 } \\ & \text { V202 } \end{aligned}$	Program amplifier gain (642A-2)
	Low record level	$\begin{aligned} & \text { V401 } \\ & \text { V402 } \\ & \text { V404 } \end{aligned}$	VU meter calibration (216C-2)
High playback distortion	Insufficient record bias	$\begin{aligned} & \text { V403 } \\ & \text { V405 } \end{aligned}$	Bias output level (216C-2)
Loss of high-frequency response	Improper equalization	-	Recording amplifier (216C-2) and program amplifier (642A-2) equalization
	Excessive record bias	-	Bias output level (216C-2)
Cue inoperative or intermittent	Defective cue tone oscillator	V405	-
	Defective cue amplifier	$\begin{aligned} & \text { V301 } \\ & \text { V302 } \\ & \text { V303 } \end{aligned}$	Cue amplifier gain (642A-2)

unit instructions

642A-2
 Recorder/Playback Unit

table of contents

Section Page
1 GENERAL DESCRIPTION 1
1.1 Purpose of Equipment 1
1.2 Description of Equipment 1
1.3 Equipment Specifications 1
1.3.1 Physical. 1
1.3.2 Electrical 1
1.3.3 Mechanical 2
1.4 Tube Complement 2
2 INSTALLATION 3
2.1 General 3
OPERATION 3
3.1 General 3
PRINCIPLES OF OPERATION 3
4.1 General 3
4.2 Start-Stop Circuits 3
4.3 Tape Transport Mechanism 5
4.4 Program Circuits 5
4.5 Cue Circuits 5
4.6 Remote, Auxiliary, and Cue Switching Circuits 7
MAINTENANCE 9
5.1 Preventive Maintenance 9
5.1.1 Cleaning Recording/Playback Heads 9
5.1.2 Cleaning Pressure Roller and Capstan 9
5.1.3 Lubricating Motor and Bearings 9
5.1 .4 Demagnetizing Recording/Playback Heads 10
5.1 .5 Checking Tubes 10
5.1.6 Cleaning Relays 10
5.1.7 Checking Wiring 10
5.2 Adjustments 10
5.2.1 Test Equipment 10
5.2.2 Test Setup 10
5.2.3 Program Amplifier Equalization and Gain Adjustments 10
5.2.4 Cue Amplifier Gain Adjustments 11
5.2.5 Head Alignment 12
5.3 Trouble Shooting 12
PARTS LIST 13
6ILLUSTRATIONS23

list of illustrations

Figure Page
1-1 642A-2 Recorder/Playback Unit (C754-21-P) 1
4-1 642A-2 Recorder/Playback Unit, Block Diagram (C754-27-4) 4
4-2 Start-Stop Circuits, Simplified Schematic Diagram (C754-18-4) 4
4-3 Tape Transport Mechanism, Functional Diagram (C754-45-4) 5
4-4 Program Circuits, Simplified Schematic Diagram (C754-15-3) 6
4-5 Cue Circuits, Simplified Schematic Diagram (C754-19-4) 6
4-6 Remote, Auxiliary, and Cue Switching Circuits, Simplified Schematic Diagram (C754-16-3) 7
5-1 642A-2 Recorder/Playback Unit, Test Setup (C754-25-3) 11
6-1 642A-2 Recorder/Playback Unit, Parts Identification (Top View) (C754-63-P) 17
6-2 642A-2 Recorder/Playback Unit, Parts Identification (Bottom View) (C754-34-P) 18
6-3 642A-2 Tape Transport Mechanism, Exploded View (C754-56-5) 19
6-4 Program Amplifier Module, Parts Identification (C754-32-P) 20
6-5 Cue Amplifier Module, Parts Identification (C754-64-P) (C754-59-P) 21
7-1 642A-2 Recorder/Playback Unit, Schematic Diagram (C754-07-6) 23
7-2 Program Amplifier Module, Schematic Diagram (C754-08-4) 24
7-3 Cue Amplifier Module, Schematic Diagram (C754-57-5) 25
list of tablesTablePage
1-1 642A-2 Tube Complement 2
5-1 Preventive Maintenance Schedule 9
5-2 Motor Lubricants 10
5-3 Bearing Lubricants 10
5-4 Program Amplifier Equalization Check 11
5-5 642A-2 Voltage Measurements 12

general description

1.I Purpose of Equipment.

The 642A-2 Recorder/Playback Unit contains the tape transport mechanism, magnetic recording/playback heads, program amplifier and cue amplifier modules, and most of the control circuits for the Tape Cartridge System. This unit may be used alone to provide playback facilitites only, or with the 216C-2 Recording Amplifier for recording.

1.2 Deseription of Equipment.

The 642A-2 Recorder/Playback Unit, shown in figure $1-1$, weighs 40 pounds, and is $8-3 / 4$ inches high, 15 inches wide, and 13-3/4 inches deep. Extender panels are furnished with the 642A-2 to extend the width to 19 inches for rack mounting. The program and cue amplifiers in the 642A-2 are separate plug-in type modules. These modules are electrically connected to the main chassis with 12 -terminal jacks, and mechanically fastened to the chassis with two hold-down screws in each module. All electrical comections to the 642A-2 are made at the rear of the unit.

1.3 Equipment Specifications.

1.3.1 PHYSICAL.

Size	15 inches wide, inches high, inches deep.
13-3/4	

1.3.2 ELECTRICAL.

Power source 105 to 125 volts, $50 / 60$ cps, 1 phase.

Power requirements . Standby: 25 watts.
Operate: 100 watts.

2.1 General.

Refer to section 2 of the system instructions for the Tape Cartridge System, Collins part number 523-0756575, for installation instructions.

3.1 General.

Refer to section 3 of the system instructions for the Tape Cartridge System, Collins part number 523-0756575, for operating instructions.

4. 1 General.

Figure 4-1 is a block diagram of the 642A-2 Recorder/ Playback Unit. Figures 7-1 through 7-3are schematic diagrams of the main chassis and the program and cue amplifier modules.

The principles of operation of the 642A-2 Recorder/ Playback Unit are divided into five parts: (1) startstop circuits, (2) tape transport mechanism, (3) program circuits, (4) cue circuits, and (5) remote, auxiliary, and cue switching circuits.

4.2 Start-Stop Circuits.

Refer to figure 4-2, a simplified schematic diagram of start-stop circuits in the 642A-2 Recorder/ Playback Unit.

When the POWER switch on the front panel is pushed, S103 is closed, applying power to the main power supply. This supply furnishes +300 volts $d-c$ to the plates of tubes in the program and cue amplifier
modules, +12 volts $\mathrm{d}-\mathrm{c}$ to the program amplifier filaments, and 6.3 volts a-c to the cue amplifier filaments.

When a tape cartridge is properly inserted in the 642A-2, microswitch S104 is closed. This switch turns on the tape-drive motor, B101, activates the tapedrive solenoid power supply, and activates a separate +30 -volt d-c power supply that furnishes voltages to some of the control relays. This +30 volts d-c causes the READY indicator on the front panel to light.

When the START switch on the front panel is momentarily pushed, start relay K102 is energized. This relay (1) energizes the tape-drive solenoid to start tape motion, and (2) energizes squelch relay K103. The energizing of K 103 is delayed about 0.1 second after the energizing of K102 because capacitor C105 shunts the coil of relay K103 and must charge through resistor R106. Capacitor C105 discharges through R102 when K103 becomes energized. Closed contacts 10 and 6 of K103 shunt the START switch to keep K102 and K103 energized after the START switch is released. Because of the delayed energizing of K103, the START

Figure 4-1. 642A-2 Recorder/Playback Unit, Block Diagram

Figure 4-2. Start-Stop Circuits, Simplified Schematic Diagram
switch must be closed for at least 0.1 second in order for the start relay, K102, to remain energized.
When the STOP switch on the front panel is pushed, the +30 -volt d-c to the coil of relay K103 is interrupted. This will de-energize K103and, in turn, K102 and tapedrive solenoid L103. The stop-cue relay, K106, is also connected in the stop circuit so that if there is a stopcue tone on the tape, K106 will be energized, stopping the tape motion in the same way as the STOP switch.

4.3 Tape Transport Mechanism

The tape transport mechanism in the 642A-2 Recorder/ Playback Unit is shown in figure 4-3.

When the tape cartridge is properly inserted in place, microswitch S104 is closed. This starts motor B101, a $1 / 75$ horsepower, synchronous motor that operates directly from the 115 -volt, 60 -cycle line, using capacitor C117 to operate. This motor drives a flywheel through three drive belts. The capstan is connected to the flywheel.

When the START switch is pressed, tape-drive solenoid L103 is energized. This solenoid is connected, through an actuating mechanism shown in figure 4-3, to a rubber pressure roller that presses the tape against the capstan, starting the tape moving past the recording/playback heads at a speed of $7-1 / 2$ inches per second.

4.4. Program Circuits.

Refer to figure 4-4, a simplified schematic diagram of program circuits in the 642A-2 Recorder/Playback Unit.

During playback, program head transfer relay K101 is de-energized, and the program head, L101, is connected to the input of the program amplifier. The program amplifier is a separate module that connects to the 642A-2 chassis. Figure 7-2 is a schematic diagram of the program amplifier module.

The program amplifier output is fed to the program output line through squelch relay K103 and output relay K105. Squelch relay K103 is energized about 0.1 second after the tape is started and other control circuits are energized. This delay eliminates switching noise by attenuating the output with a resistive network composed of R103, R104, and R105. K103 also energizes output relay K105. This output relay switches the program output to terminals on the rear of the $642 \mathrm{~A}-2$. The output level is adjusted to 0 dbm by varying the gain of the program amplifier.
During recording, program head transfer relay K101 is energized by circuits in the 216C-2 Recording Amplifier. This comnects the program output of the $216 \mathrm{C}-2$ to the program head, L101.

4.5 Cue Circuits.

Refer to figure 4-5, a simplified schematic diagram of cue circuits in the 642A-2 Recorder/Playback Unit.
During recording, the cue input from the $216 \mathrm{C}-2$ Recording Amplifier may be one of two cue tones. One, the stop-cue tone, has a frequency of 1000 cps . The other, an external-cue tone, has a frequency of 150 cps. Both tones last for about 0.5 second. The stopcue tone is recorded at the moment recording starts. The external-cue tone may be recorded at any time during the recording process.

Figure 4-3. Tape Transport Mechanism, Functional Diagram

Figure 4-4. Program Circuits, Simplified Schematic Diagram

Figure 4-5. Cue Circuits, Simplified Schematic Diagram

Whenever one of the recorded cue tones passes the cue head during playback, there is an input to the cue amplifier. The cue amplifier is a separate module that connects to the 642A-2 chassis. Figure 7-3 is a schematic diagram of the cue amplifier module.

The cue-tone input to the cue amplifier module is amplified by cue amplifiers V301A and V301B and fed to the input of two audio filters. One of these filters passes the 1000 -cps stop-cue tone; the other passes the $150-\mathrm{cps}$ external-cue tone. The outputs of the two filters are amplified by sepa rate amplifiers, rectified, and applied to separate relay amplifiers.

The relay amplifiers, V303A and V303B, are triode switches that are connected in series with the coils of the stop-cue and external-cue relays. If a stop-cue tone is present on the tape, the stop-cue relay, K106, will be energized and the tape will stop. If an external-cue tone is present, the external-cue relay, K 302 , will be energized, and the external equipment that is to be automatically cued will operate.

Since the stop-cue tone lasts for about 0.5 second and only 0.1 second is required to stop the tape, 0.4 second of the stop-cue tone will still be passing the cue head
when the tape is started. If the stop-cue relay amplifier were not disconnected from the stop-cue relay during this time, the remaining tone would cause the cue-stop relay to energize, locking the unit off. To prevent this, a stop-cue override relay, K104, is used.

When the start relay, K102, is energized, stop-cue relay K104 is energized by a current surge that charges capacitor C103, which is in series with the coil of K104. This discomnects the plate circuit of the stop-cue relay amplifier from the coil of the stop-cue relay, K106, and connects it instead to the coil of the override relay, K104, through contacts 10 and 11 of K104. The override relay will remain energized as long as there is a stopcue tone imput to the cue amplifier, and the stop-cue relay, K106, will be disabled during this time. When the stop-cue tone has passed the cue head, the override relay will be de-energized, reconnecting the stop-cue relay so that the stop-cue relay will operate when the stop-cue tone again passes the cue head.

4.6 Remole, Auxiliary, and Cue Switehing Cirenits.

Refer to figure 4-6, a simplified schematic diagram of remote, auxiliary, and cue switching circuits in the 642A-2 Recorder/Playback Unit.

Figure 4-6. Remote, Auxiliary, and Cue Switching Circuits, Simplified Schematic Diagram

Terminals 1 through 4 of TB101 are connected to the $313 \mathrm{~T}-1$, $313 \mathrm{~T}-3$, or $313 \mathrm{~T}-4$ Remote Control Switching Units to provide remote starting and stopping of a 642A-2.

Terminals 5 through 7 of TB101 are connected to external-cue relay contacts to provide cuing of external equipment.

Terminals 8 through 10 of TB101 are connected to the stop-cue override relay to provide starting and stopping of auxiliary equipment.

Terminals 11 through 13 of TB101 are connected to the output relay. Comnections can be made to terminals 8 through 14 that allow a number of units to be connected to the same output line, but only one machine on the line at a time.

maintenance

5.1 Preventive Maintenance.

Table 5-1 lists the preventive maintenance schedule for the 642A-2 Recorder/Playback Unit. It is essential that the maintenance operations in this table be performed at the given intervals to ensure continuing proper operation of the unit.

5.1.1 CLEANING RECORDING/PLAYBACK HEADS.

Remove the dust and oxide that collect on the recording/playback heads by wiping the face of each head with a lint-free cloth saturated with methyl alcohol. Be careful not to scratch the heads. The heads may be reached by wrapping the cloth around the eraser end of a pencil. After cleaning, polish the heads with a lint-free lens polishing cloth or paper to remove any remaining residue.

Do not use commercial head-cleaning solvents containing acetone or other harmful chemicals. These chemicals can permanently damage the heads, tape, and tape cartridges.

5.1.2 CLEANING PRESSURE ROLLERAND CAPSTAN.

Clean the pressure roller and capstan with alcohol.

CAUTION

Do not get alcohol into the bearings.

5.1.3 LUBRICATING MOTOR AND BEARINGS.

5.1.3.1 Lubricate the tape-drive motor, B101, as follows:
a. Remove the top cover from the 642A-2.
b. Remove the oiler access plug from the tape deck.
c. Put 10 drops of any of the lubricants listed in table 5-2 into each of the two oiler cups.
d. Replace the oiler access plug.
5.1.3.2 Lubricate the following bearings with two or three drops of any of the lubricants listed in table 5-3.
a. Pressure-roller bearing (1).
b.. Pressure-roller cross-shaft bearings (2).
c. Capstan/flywheel bearings (2).

Do not mix motor and bearing oils. Be careful to keep oil off the rubber pressure roller, capstan, and drive belts when lubricating the unit.

TABLE 5-1. PREVENTIVE MAINTENANCE SCHEDULE

INTERVAL	MAINTENANCE OPERATION	REF PARAGRAPH
Daily	Clean recording/playback heads	5.1 .1
Weekly	Clean pressure roller and capstan	5.1 .2
Every 2 weeks or 200 hours of operation	Lubricate motor and bearings	5.1 .3
Monthly	Demagnetize recording/ playback heads Check tubes	5.1 .4
Monthly	Clean relays	5.1 .5
As required	Check wiring	
As required	Check head alignment	5.1 .6
As required	5.1 .7	

TABLE 5-2
MOTOR LUBRICANTS

TYPE	SOURCE
Part no. 005-0759-00	Collins Radio Company
L0-30—.	Penola, Inc.
Harmony No. 44	Gulf Oil Company

TABLE 5-3
BEARING LUBRICANTS

TYPE	SOURCE
Part no. 553-2454-002	Collins Radio Company
Part no. 005-0392-00	Collins Radio Company
Aeroshell Fluid 12	Shell Oil Company
Univis P-38	Esso-Standard Oil Company
Pioneer P-10	Eclipse-Pioneer Company
Cosmolubric 270	E.F. Houghton Company
Winsor Lub L-245X	F.E. Anderson Company

5.1.4 DEMAGNETIZING HEADS.

Demagnetize the heads and capstan using a bulk tape eraser. Follow instructions for using eraser.

5.1.5 CHECKING TUBES.

Check the emission of all tubes in the program and cue amplifier modules with a tube checker. Replace all low-emission tubes immediately.

5.1.6 CLEANING RELAYS.

In case of relay failure, clean dirty (not pitted or burned) relay contacts with a burnishing tool. Before using tool, clean its surfaces with alcohol. Do not touch this surface with fingers before using the tool.

CAUTION

Do not bend contact supporting members beyond their normal operating limits while burnishing contacts.

Remove dirt and dust from contacts with a softbristled brush or by blowing; operate relay armature manually while blowing on contacts.

5.1.7 CHECKING WIRING.

Periodically check open and laced wiring on chassis and modules. Check insulation for physical damage and charring. Examine wires for breaks and for improper dress in relation to adjacent wiring or chassis.

5.2 Adjustments.

5.2.1 TEST EQUIPMENT.

The following test equipment, or equivalent, is required to perform the adjustments in this section. All test equipment should be properly calibrated and in good working condition.
a. Hewlett-Packard 200AB Audio Oscillator.
b. Hewlett-Packard 400D Vacuum-Tube Voltmeter (2 required).
c. Hewlett-Packard 410B Vacuum-Tube Voltmeter.
d. Attenuator (see figure 5-1).
e. $600-\mathrm{ohm}, 1$-watt resistor.
f. Head alignment tape (Collins part number 097-6076-00).
g. Cartridge alignment gauge (Collins part number 544-2632-002).

5.2.2 TEST SETUP.

Connect the 642A-2 Recorder/Playback Unit and test equipment as shown in figure 5-1. Apply power to all units. Allow a 2 -minute warmupperiod before making any tests. Remove the top cover from the 642A-2.

5.2.3 PROGRAM AMPLIFIER EQUALIZATION AND GAIN ADJUSTMENTS.

a. Connect the unbalanced audio oscillator output, through the attenuator, to the program amplifier input, J201, as shown in figure 5-1.
b. Insert an erased tape cartridge into the 642A-2.
c. Press the START switch on the 642A-2.
d. Set the program amplifier input to $100 \mathrm{cps}, 0.5$ millivolt.
e. Adjust the program amplifier GADN control, R210, for a -7-dbm output level.
f. Set the program amplifier input to $10,000 \mathrm{cps}$, 0.5 millivolt.
. g. Adjust the program amplifier EQUAL. control, R209, for a $-36-\mathrm{dbm}$ output level.
h. Repeat steps d through g, as necessary, until proper output levels are obtained at both 100 cps and $10,000 \mathrm{cps}$.
i. Measure and record the output level (in dbm) at each of the program amplifier inputs listed in table 5-4. Limits are given in the table.
j. Set the program amplifier input to $400 \mathrm{cps}, 2.2$ millivolts.
k. Adjust the program amplifier GAIN control, R210, for a $0-\mathrm{dbm}$ output level.

1. Press the STOP switch on the 642A-2.

Figure 5-1. 642A-2 Recorder/Playback Unit, Test Setup

TABLE 5-4. PROGRAM AMPLIFIER EQUALIZATION CHECK

PROGRAM AMPLIFIER INPUT		OUTPUT LEVEL (dbm)	
FREQUENCY (cps)	LEVEL (millivolts)	MEASURED	LIMITS
50	0.5		-1 to -5
70	0.5	-4 to -6	
100	0.5	-7	
400	0.5	-17 to -19	
1000	0.5	-24.5 to 26.5	
4000	0.5	-33.5 to -35.5	
7000	0.5	-34.5 to -36.5	
10,000	0.5	-36	
15,000	0.5		-34 to -38

5.2.4 CUE AMPLIFIER GAIN ADJUSTMENTS.

a. Connect the unbalanced audio oscillator output, through the attenuator, to the cue amplifier input, J301, as shown in figure 5-1.
b. Insert an erased tape cartridge into the 642A-2.
c. Press the START switch on the 642A-2.
d. Set the cue amplifier STOP SEN. control, R310, fully counterclockwise.
e. Set the cue amplifier input to $1000 \mathrm{cps}, 4$ millivolts.
f. Turn the cue amplifier STOP SEN. control, R310, slowly clockwise until the tape stops.
g. Set the cue amplifier CUE SEN. control, R322, fully counterclockwise.
h. Set the cue amplifier input to $150 \mathrm{cps}, 0.8$ millivolt.
i. Connect the 410 B vtvm ohmmeter between terminals 6 and 7 of TB101 on the 642A-2.
j. Turn the cue amplifier CUE SEN. control, R322, slowly clockwise until the ohmmeter abruptly indicates a short circuit between terminals 6 and 7 of TB101.

5.2.5 HEAD ALIGNMENT.

a. Remove the 642A-2 top cover and rear head cover shield,
b. Check cartridge alignment by inserting the cartridge alignment gauge (Collins part number $554-2632-002$) into the $642 \mathrm{~A}-2$ in place of a tape cartridge. If adjustment is required, adjust the head mounting bracket and hexhead screw between the heads. Use a $1 / 4$ inch open-end wrench to adjust the hexhead screw from the rear of the head mounting plate. c. Make normal cable connections in the 642A-2. Refer to paragraph 2.2.2 of the system instructions.
d. Connect the 600 -ohm output load and 400D vtvm to terminals 15 and 16 of TB101 on the 642A-2 as shown in figure 5-1.

NOTE

The two recording/playback heads are held in place by a pressure plate on the rear of the head mounting plate. To align the heads, loosen the pressure plate slightly to permit the heads to be turned, then retighten to hold the heads in place.
e. Loosen the two pressure-plate screws nearest the program head (the head on the left as viewed from the front of the unit) approximately $1 / 4$ turn each.
f. Insert an alignment tape (Collins part number 097-6076-00) into place in the 642A-2, and start the tape.
g. Using a $3 / 8$-inch open-end wrench, turn the $3 / 8$ inch hexnut connected to the program head to produce a peak indication on the 400D vtvm. Tighten the program pressure plate. Recheck output level to be sure it is still at the peak value. If it is not, repeat this procedure.
h. To align the cue head, follow the same procedure as in the above steps, except connect J105 (cue-head output) to J201 (program amplifier input). Be sure to reconnect cables in normal way when alignment procedure is completed.
i. Replace rear head cover shield and top cover.

5.3 Trouble Shooting.

Table 5-5 lists voltage values at the pins of tube in the 642A-2 Recorder/Playback Unit. These particular values were obtained from measurements on a typical operating unit. The voltages may vary slightly from unit to unit without affecting performance. All voltages listed are measured between the tube pin and ground (except where noted). Use the 410 B vtvm to make these measurements.

TABLE 5-5. 642A-2 VOLTAGE MEASUREMENTS

TUBE	$\begin{gathered} \text { TYPE } \\ \text { VOLTAGE } \end{gathered}$	TUBE PIN NO.								
		1	2	3	4	5	6	7	8	9
V201	D-C	+157	0	+ 1.2	+13	0	+126	0	+ 0.63	+6.4
	A-C									
V202	D-C	+215	0	+ 3.5	0	+13	+91	0	+ 1.7	$+6.6$
	A-C									
V301	D-C	+98	0	+ 0.9			+98	0	+0.9	
	A-C				*	*				*
V302	D-C	+145	0	+1.0			+145	0	+1.0	
	A-C				*	*				*
V303	D-C	+360	0	+14			+360	0	+14	
	A-C				*	*				*

[^0]
*
$309-5200-000$

ITEM	DESCRIPTION	COLLINS part number
MP112	SPRING, HELICAL EXTENSION: CRES; passivated Cinish; 43 coils; 0.250 in . dia by $2.998 \mathrm{in} . \mathrm{lg}$ overall dim.	549-50こ3-002
MP113	FLYWHEEL-DECK ASSEMBLY: 4-1/2 in, II by $5-7 / 8 \mathrm{in}$, d by $13 \mathrm{in}, \mathrm{dg}$	554-2604-004
MP114	ADAPTER, SWITCH ACTUATOR: CRES; cadmium plated 0.740 in . by 0.800 in . by 2.450 in . overall dim.	548-8134-002
MP1 15	ROLLER, PINCH: compresses tape against tape drive capstan, 0.795 in . dia by 0.375 in . Ig overall	235-0001-00
MP116	PLATE AND BRACKET ASSEABLY, MOUNTING: 0.513 in . by 4.375 in . by $5.250 \mathrm{in} . \mathrm{o} / \mathrm{a}$ dim.	549-5043-003
MP117	SPACER, SLEEVE: aluminum, chromate dip; $0.203 \mathrm{in} . \mathrm{ID}, 0.625 \mathrm{OD}, 0.812 \mathrm{in} .1 \mathrm{I} 5$	549-5021-002
MP118	PIN. THREADED: CRES; 10-32 thd; $0.250 \mathrm{in} . w$ across flats by $1.166 \mathrm{in} . \mathrm{lg}$ overall	549-5005-002
MPi19	SPACER, SLEEVE: aluminum, chromate dIp; 0.049 in, thk wall, $0.250 \mathrm{in} . \mathrm{OD}, 0.750 \mathrm{in} . \mathrm{lg}$; no. 6 screw size	541-6037-002
MP120	BUSHING, SLEEVE: plastic; 0.220 in. dia by $0.167 \mathrm{in} . \mathrm{ig}$ overall	549-5010-002
MP121	CLIP, SPRING TENSION: copper; 0.375 In . by 1 in. by 3 in. approx overall	548-8132-002
MP122	MOUNT. RESILIENT: rubber and brass; 1 in . dia by 0.500 mn . Ig overall; Lord Mig Co. part no. J-2927-1-4	200-0963-00
MP123	RING, RETAINING: steel, type "E", 0.145 in . m 0.335 in . OD, 0.025 in. thk; Waldes Kohinoor part no. 5133-18-MD	340-0090-00
MP124	RING, RETALNING: steel, type "E'; 0.073 in, ID 0.187 in. OD. 0.015 in. thk; Waldes Kohinoor part no. 5133-9-MD	340-0086-00
A1P125	RING. RETAINING: steel, type "E'"; 0.094 in . D , 0.230 in . OD, 0.015 in , thk; Waldes Kohinoor part no, 5133-12-MD	340-0087-00
MP126	ming, retaining: steel, type "E"; 0.202 in . ID. 0.527 in . OD, 0.025 in , thk; Waldes Kohinoor part no. $5133-25-\mathrm{MD}$	340-0091-00
MP127	CLAMP, SOLENOD: aluminum, $1 / 218$ in, by 1.500 in , by 1.625 in , overal]	549-5000-003
MP128	KEY, WOODRUFF: stainless steel; 0.0635 in. by 0.109 in . by 0.250 in .	015-0347-00
MP129	BUSHING, CLAMP: steel; 0.750 in. dia by 0.180 In. 1g overall	548-8129-002
MP130	ERACKET, SHIELD: steel; 1.125 in. by 1.750 in . by 3.250 in , overall	549-5058-004
MP131	BALL, BEARING: steel; $3 / 16$ in. dia; New Departure Div. of General Motors Corp. part no. 3/16 in. A1BW BALL: (p/o MP113)	309-5200-00
MP132	WASHER, NONMETALLIC: felt; $3 / 16 \mathrm{in}$. ID . 7/16 in. OD; (p / O MP113)	549-5065-002
MP133	PLATE, SHIELD: steel; 1.187 in . by 4 in . by 8.500 in . overall	549-5060-004
R116	$\begin{aligned} & \text { RESISTOR. FLXED, COMPOSITION: } 47 \mathrm{ohms} \\ & \pm 10^{\circ} .2 \mathrm{w} \end{aligned}$	745-5596-00
1120	RESISTOR, FIXED, WIREWOUND: 16 ohms ± 15 \%. 11 w	746-6044-00
R121	RESISTOR, FIXED, COMPOSITION: 1000 ohms. $\pm 10^{\circ} 2 \mathrm{w}$	745-5652-00
S104	SWITCH, SENSITIVE: spst; normally open, 10 amp at 125 or $250 \mathrm{va}-\mathrm{c}$; solder-lug terminal; Micro Switch DIv. of Flrst Industrial Corp. part no. V3-32	286-7029-00
TB111	TERMINAL BOARD: phenolic, 4 brass solder-lug terminals; $1 / 16 \mathrm{in}$. by $3 / 8 \mathrm{in}$. by 1-1/2 in.; Cinch Mig Corp. part no. 1532-A	306-0032-00
TB112	TERMINAL HOARD: same as TEll1	306-9032-00
TB114	TERMINAL BOARD: 2 brass solder-lug terminals; $1 / 16 \mathrm{in}$. by $3 / 8 \mathrm{in}$. by $3 / 4 \mathrm{in}$.	306-0006-00
	642A-2 PROGRAM AMPLIFIER MODULE	548-8091-00
C201	CAPACITOR, FIXED, MCA: 51 uu ± 1000 vdcw; Electro Motive jart na. DM15E510K01	912-2796-00
C202	CAPACITOR, FIXED, ELECTROLYTIC: 250 uf $-10 \%+100 \%, 6$ vdcw; Sprague Electric part no. 30D138A1	183-1185-00
C203	CAPACITOR, FIXED, ELECTROLYTIC: dual section, 15 uf $-10 \%+40 \%$, 450 vdcw	183-1491-00
C204	CAPACITOR, FIXED, PAPER: $0.047 \mathrm{uf} \pm 10 \%, 400$ vdew; Sprague Electrle part no. 180P47394	931-0295-00
C205	NOT USED	
C206	CAPACITOR. FIXED, CERAMIC: 0.1 uf $\pm 10 \%, 400$ vdcw; Sprague Electric part no. 160P10404	931-0209-00
C207	CAPACITOR, FIXED, PAPER: same as C204	031-0295-00

ITEM	DESCRIPTION	COLLINS PART NUMBER
C208	CAPACITOR, FIXED, PAPER: same as C204	931-0295-00
C209	CAPACITOR, FIXED, ELECTROLY'IC: 8 uf -10% +50\%. 450 vdcw; P. R. Mallory part no. TC71	183-1051-00
C210	CAPACITOR, FIXED. MICA: 270 UuI $\pm 5 \%$. 500 vdew; Electro Motive part no. DM15F271J01	912-2846-00
H201	WASHER, FLAT: CRES, 0.062 in , the by 0.192 in . In by $3 / 8 \mathrm{in}$. OD	500-1122-003
H202	SCREW, CAPTIVE, NO, 3: steel, undercut and grooved, 0.240 in , dia by 3.093 in . Ig	548-2169-003
J201	JACK, TELEPHONE: steel, miniature, panel mounted; Switcheraft part no. 3501 FP	360-0148-00
P201	CONNECTOR, RECEPTACLE, ELECTRICAL: 12 male contacts, 10 amp; Howard B. Jones, Div. Cinch Mfg. part no. P-312-AB	365-2120-00
R201		745-1481-00
R202	RESISTOR, FIXED, COMPOSITION: 1500 ohms ± 10 I	745-3359-00
R203	RESISTOR, FIXED, COMPOSITION: 56,000 ohms $\pm 10 \%$, $1 / 2 \mathrm{w}$	745-1426-00
R205	RESISTOR, FIXED, COMPOSITION: 1.0 megohm $\pm 10 \% 1 / 2 \mathrm{w}$	745-1478-00
R206	RESISTOR, FIXED. COMPOSITION: 580 ohms $\pm 10 \% .1 / 2 \mathrm{w}$	745-1342-00
R207	RESISTOR, FIXED, COMPOSITION: 0.15 megohm, 1/2 w	745-1443-00
R208		745-1408-00
R209	RESISTOR, VARIABLE: COMPOSITION: 1000 ohms $\pm 20 \%$. $1 / 4 \mathrm{w}$	376-4727-00
R210	RESISTOR, VARIABLE: COMPOSITION: 100,000 ohms ± 30., $1 / 4 \mathrm{w}$	376-4733-00
R211	RESISTOR, FIXED. COMPOSITION: 2200 ohms $\pm 10 \%, 1 / 2 \mathrm{w}$	745-1366-00
R212	RESISTOR. FIXED, COMPOSITION: 0.33 megohm t10\%, 1/2 w	745-1457-00
R213	RESISTOR, FIXED, COMPOSITION: same as R205	745-1478-00
R214	RESISTOR, FIXED, COMPOSITION: 1200 ohms $\pm 10 \%, 1 / 2 w$	745-1356-00
R215	RESISTOR, FIXED, COMPOSITION: $39,000 \pm 10 \%$, 1 w	745-3419-00
R216	RESISTOR, FIXED. COMPOSITION: 0.10 megohm $\pm 10 \%, 1 / 2 \mathrm{w}$ $\pm 10 \%, 1 / 2 \mathrm{w}$	745-1436-00
R217	RESISTOR, FIXED. COMPOSITION: 0.47 megohm $\pm 10 \%, 1 / 2$ w	745-1464-00
T201	TRANSFORMER, AUDIO FREQUENCY: pri 15,000 ohms; sec. CT. 600 ohms, 250 ohms, 50 ohms; continuous duty cycle; Microton part no. M4135	667-0008-00
TE201	TERMINAL BOARD: phenolic, brass solder-lug terminals; $11 / 16 \mathrm{in}$. w by $1-7 / 8 \mathrm{in}$. Ig ; Cinch Mig. part no. 1542-A	306-9033-00
TB202	TERMINAL BOARD ASSEMBLY: incl 1 hoard, 4 capacitors, 13 resistors	549-4528-004
V201	ELECTRON TUBE: twin triode; Ampere type ECCB3/12AX7	255-0386-00
V202	ELECTRON TUBE: Iwin triode; General Electric type 12AT7	255-0205-00
xV201	SOCKET, ELECTRON TUBE: 9 contact, top mounting, miniature; 1 amp current rating; phenolic insulation	220-1103-00
XV202	SOCKET, ELECTRON TUBE: same as XV201	220-1103-00
	642A-2 CUE AMPLIFIER MODULE	554-5535-00
C301	CAPACITOR, FIXED, CERAMIC: 0.01 uf -20\% $+80^{6} 9,100 \mathrm{v}$ d-c; Erie Resistor Corp. part no. 855502 X5GO 103 P	913-3680-00
C302	CAPACITOR, FIXED, ELECTROLYTIC: 50 uf $-10 \%+100 \%, 15$ v d-c; Sprague Electric Co. part по. D32359	183-1157-00
C303	CAPACITOR, FIXED, PAPER: 0.1 uf $\pm 10 \%, 400 \mathrm{v}$ d-c; Sprague Electric Co. part no. 160P10494	931-0299-00
C304	CAPACITOR, FIXED, PAPER: $0.00-47$ uf $\pm 10 \%$. 400 v d-c; Sprague Electrlc Co. part no. 160P47204	931-0285-00
C305	CAPACITOR, FIXED, ELECTROLYTIC: 2 uf -10% $+100 \%$, 50 v d-c; Sprague Electric part no. D33212	183-1183-00
C306	CAPACITOR, FIXED, PAPER: 0.01 uf $\pm 10 \%$ \% 600 v d-c; Sprague Electric Co. part no. 160pl0396	931-0289-00
C307	CAPACITOR, FIXED, ELECTROLYTIC: dual section, $15 \mathrm{uf}, 450 \mathrm{v} \mathrm{d}-\mathrm{c}$ both sections, $-10 \%+40 \%$	183-1491-00
C308	CAPACITOR, FLXED, MICA: 2700 uuf $\pm 5 \%, 500$ v d-c; MIL type CM06F272J03	912-3034-00
C309	CAPACITOR, FIXED. ELECTROLYTIC: 20 uf $-10+100 \%, 25 \mathrm{v}$ d-c; Sprague Electric Co. part no. D29791	183-1165-00

$$
\begin{array}{ll}
\text { Slewpai 50. } 7.50 & 099-2546-000 \\
\text { old " } & 235-0011-000 \\
1700 \text { ft tape } & 097-5852-000 \\
\text { Alig.tape } & 097-6076-000
\end{array}
$$

Figure 6-1. 642A-2 Recorder/Playback Unit. Parts Identification (Top View)

Figure 6-2. 642A-2 Recorder/Playback Unit, Parts Identification (Bottom View)
$64-H: 9 A=$
642A- Recorder/P:ayback Unit

Figure g-3. Tape Transport Assembly, Exploded View

Figure 6-4. Program Amplifier Module, Parts Identification

Figure 6-5. Cue Amplifier Module, Parts Identification (Sheet 1 of 2)

Figure 6-5. Cue Amplifier Module, Parts Identification (Sheet 2 of 2)

Figure 7-2. Program Amplifier Module, Schematic Diagram

unit instructions

216C-2
 Recording Amplifier

©Collins Radıo Company 1963

table of contents

Section Page
1 GENERAL DESCRIPTION 1
1.1 Purpose of Equipment 1
1.2 Description of Equipment 1
1.3 Equipment Specifications 1
1.3.1 Physical. 1
1.3.2 Electrical 1
1.4 Tube Complement 2
2 INSTALLATION 3
2.1 General 3
3 OPERATION 3
3.1 General 3
PRINCIPLES OF OPERATION 3
4.1 General 3
4.2 Control Circuits 3
MAINTENANCE 7
5.1 Preventive Maintenance 7
5.1.1 Tubes 7
5.1.2 Wiring 7
5.2 Adjustments 7
5.2.1 Test Equipment 7
5.2.2 Test Setup 7
5.2.3 Equalization and Meter Calibration Adjustments 7
5.2.4 Bias Output Level Adjustment 8
5.2.5 Microphone Amplifier Gain Check 8
5.2.6 Line Amplifier Gain Check 8
5.3 Trouble Shooting 9
PARTS LIST 10
ILLUSTRATIONS 17

list of illustrations

Figure Page
1-1 216C-2 Recording Amplifier (C754-23-P) 1
4-1 216C-2 Recording Amplifier, Block Diagram (C754-26-4) 4
4-2 Control Circuits, Simplified Schematic Diagram (C754-36-5) 5
5-1 216C-2 Test Setup (C754-24-4) 7
6-1 216C-2 Recording Amplifier, Parts Identification (Top View) (C754-62-P). 13
6-2 216C-2 Recording Amplifier, Parts Identification (Bottom View) (C754-65-P) (C754-66-P) 14
7-1 216C-2 Recording Amplifier, Schematic Diagram (C754-58-5) 17

list of tables

Table Page
1-1 216C-2 Tube Complement 2
5-1 Recording Amplifier Equalization Check 8
5-2 216C-2 Voltage Measurements 9

general description

1.1 Purpose of Equipment.

The 216C-2 Recording Amplifier, shown in figure 1-1, is used with the 642A-2 Recorder/Playback Unit to provide facilities for recording pre-erased tape cartridges. This unit contains preamplifiers for 600ohm line and 250 -ohm microphone inputs, input level controls, and an output amplifier. The two inputs may be mixed if desired.

1.2 Description of Equipment.

The 216C-2 weighs 15 pounds, and is 5-1/4in. high, 15 in. wide, and 13-3/4in. deep. Extender panels are furnished with the $216 \mathrm{C}-2$ to extend the width to 19 in . for rack mounting. AVU meter on the front panel indicates the recording level. Two input level controls, one for the microphone input and one for the line input, are also located on the front panel. All electrical connections to the $216 \mathrm{C}-2$ are made at the rear of the unit.

Figure 1-1. 216C-2 Recording Amplifier

1.3 Equipment Specifications.

1.3.1 PHYSICAL.

> Size . 15 inches wide, 5-1/4 inches high, 13-3/4 inches deep.
> Weight . Approximately 15 pounds.
> Mounting . 15 -inch console or 19 -inch rack with furnished extenders.
> Power source. 105 to 125 volts, $50 / 60 \mathrm{cps}, 1$ phase.
> Power requirements 35 watts.
> Audio inputs. Line: 600 ohms, balanced, -15 dbm to +10 dbm .
> Microphone: 250 ohms, balanced, -65 dbm to -35 dbm .

Signal-plus-noise to noise ratio. 50 db minimum with a line input of $400 \mathrm{cps},-15 \mathrm{dbm}$, or a microphone input of $400 \mathrm{cps},-65 \mathrm{dbm}$.

Harmonic distortion 1 percent maximum at 400 cps with a line input level of -5 dbm and output level of 110 millivolts into a 3300ohm load.

1.4 Tube Complement.

Table 1-1 lists the type and functions of all tubes in the 216C-2 Recording Amplifier.

TABLE 1-1. 216C-2 TUBE COMPLEMENT

TUBE REFERENCE DESIGNATION	TUBE TYPE	FUNCTION
V401	$12 A U 7$	Line input amplifier/mixer amplifier
V402	$12 \mathrm{AX7}$	Program output amplifier/meter amplifier
V403	$12 \mathrm{BH7}$	Program bias amplifier/cue bias amplifier
V404	$12 \mathrm{AX7}$	Microphone input preamplifier
V 405	7247	Bias osciliator/cue-tone oscillator

2.1 General.

Refer to section 2 of the system instructions for the Tape Cartridge System, Collins part number 523-0756575, for installation instructions.

3.1 General.

Refer to section 3 of the system instructions for the Tape Cartridge System, Collins part number 523-0756575, for operating instructions.

4.1 General.

Figure 4-1 is a block diagram of the 216C-2 Recording Amplifier. Figure 7-1 is a schematic diagram of the 216C-2.

The line and microphone program inputs to the $216 \mathrm{C}-2$ are amplified by input preamplifiers, a mixer amplifier, and an output amplifier. Part of the mixer amplifier output is applied, through a meter amplifier, to the front-panel VU meter to monitor recording levels.

The cue-tone output from the $216 \mathrm{C}-2$ is either 1000 cps or 150 cps , depending on whether a stop-cue or external-cue is being recorded.

The $64-\mathrm{kc}$ bias oscillator output is applied to both the program and cue outputs from the $216 \mathrm{C}-2$ to the 642A-2 Recorder/Playback Unit.

4.2 Control Circuits.

Refer to figure 4-2, a simplified schematic diagram of control circuits in the $216 \mathrm{C}-2$ Recording Amplifier.

When a tape cartridge is inserted into the 642A-2, +30 volts $\mathrm{d}-\mathrm{c}$ is applied to the $216 \mathrm{C}-2$ via the record set line. This energizes the record set relay, K404, and applies +30 volts d-c to one side of the RECORD s witch in the 216C-2.

When the RECORD switch, S402, is pressed, the +30 volts d-c is applied to the coil of the program record relay, K402, energizing it. The RECORD switch is a momentary switch, but K402 remains energized by +30 volts d-c that reaches the coil through closed contacts 5 and 9 of K 402 and the record lock line from the $642 \mathrm{~A}-2$. This +30 volts $\mathrm{d}-\mathrm{c}$ is also fed back to the $642 \mathrm{~A}-2$ on the program head transfer relay control line to energize K 101 , connecting the recording amplifier program output to the program head.

When the 642A-2 START switch is pressed, the tape starts to move. Start relay K102 in the 642A-2 energizes, removing +30 volts d-c from the record set line and de-energizing the record set relay, K 404 . At the same time, stop-cue override relay K102 energizes. This, in turn, causes cue record relay K401 to energize for about 0.5 second when capacitor C106 in the 642A-2 discharges through the cue-tone duration control line.

The cue record relay, $K 401$, causes the stop-cue tone to be recorded because it (1) activates the cue-tone oscillator by removing a ground from the oscillator grid, and (2) energizes the cue head transfer relay, K301, by applying +30 volts $\mathrm{d}-\mathrm{c}$ to the relay coil via the cue head transfer relay control line.

When the tape is running, pressing the RECORD switch will cause the cue record relay, K401, and the externalcue record relay, K403, to be energized for about 0.5
second. This will cause the external-cue tone to be recorded in a manner similar to the stop-cue tone. K403 switches components in the RC phase-shift network of the cue-tone oscillator to change the oscillator frequency from 1000 cps to 150 cps . The duration of the external-cue tone is limited to about 0.5 second as capacitor C445 discharges through the coil of K401. Contacts 10 and 6 of K403 shunt the RECORD switch to keep K403 energized as long as cue record relay K 401 is energized.

If the $64-\mathrm{kc}$ bias output of the recording amplifier were recorded while the tape accelerates when it starts, there would be an audible click when the tape is played back. To eliminate this, the bias amplifiers in the $216 \mathrm{C}-2$ are normally biased off. When the tape is started, the bias interlock line is grounded and a time-delay circuit in the $216 \mathrm{C}-2$ is activated to delay the application of bias until the tape reaches full speed.

Figure 4-1. 216C-2 Recording Amplifier, Block Diagram

maintenance

5.1 Preventive Maintenance.

5.1.1 TUBES.

Periodically check the emission of all tubes in the recording amplifier with a tube checker. Replace all low-emission tubes immediately.

5.1.2 WIRING.

Periodically check all open and laced wiring on the chassis. Check insulation for physical damage and charring. Examine wires for breaks and for improper dress in relation to adjacent wiring or chassis.

5.2 Adjustments.

5.2.1 TEST EQUIPMENT.

The following test equipment, or equivalent, is required to perform the adjustments in this section. All test equipment should be properly calibrated and in good working condition.
a. Hewlett-Packard 2004B Audio Oscillator.
b. Hewlett-Packard 400D Vacuum-Tube Voltmeters (two required).
c. Attenuator (see figure 5-1).
d. 3300 -ohm, $1 / 2$-watt resistors (two required).
e. 600 -ohm, 1 -watt resistor.

5.2.2 TEST SETUP.

Connect the 216C-2 Recording Amplifier, 642A-2 Recorder/Playback Unit, and test equipment as shown in figure 5-1. Apply power to all units. Allow a 2minute warmup period before making any tests. Remove the top covers from the $216 \mathrm{C}-2$ and $642 \mathrm{~A}-2$.

5.2.3 EQUALIZATION AND METER CALIBRATION ADJUSTMENTS.

a. Connect the balanced audio oscillator output to the LINE INPUT terminals on TB401, as shown in figure 5-1.
b. Connect the HP-400D vtvm to the program output, as shown in figure 5-1.
c. Remove tube V405.

Figure 5-1. 216C-2 Test Setup
d. Set the MIC level control on the 216C-2 front panel fully counterclockwise.
e. Insert an erased tape cartridge into the 642A-2.
f. Press the RECORD switch on the $216 \mathrm{C}-2$.
g. Press the START switch on the 642A-2.
h. Set the line input to $400 \mathrm{cps},-5 \mathrm{dbm}$.
i. Adjust the LINE level control on the $216 \mathrm{C}-2$ front panel for a -17 -dbv program output level ($0 \mathrm{dbv}=$ 0.776 volt rms).
j. Adjust the METER CAL. control, R421, until the VU meter on the $216 \mathrm{C}-2$ front panel indicates 0 vu .
k . Set the line input to $12,000 \mathrm{cps},-5 \mathrm{dbm}$.

1. Adjust the RECORD EQUAL. control, C407, for a -3 -dbv program output level.
m. Measure and record the program output level (in dbv) at each of the line inputs listed in table 5-1. Limits are given in the table.
n. Press the STOP switch on the 642A-2.
o. Replace tube V405.

5.2.4 BIAS OUTPUT LEVEL ADJUSTMENT.

a. Connect the 400 D vtvm to the program output, as shown in figure 5-1.
b. Set the MIC and LINE level controls on the 216C-2 front panel fully counterclockwise.
c. Insert an erased tape in the 642A-2.
d. Press the RECORD switch on the 216C-2.
e. Press the START switch on the 642A-2.
f. Adjust the BIAS ADJ control, R433, for a 13 -volt rms program output level.
g. Connect the 400 D vtvm to the cue output. The cue output level should be from 12 to 14 volts rms.
h. Press the STOP switch on the 642A-2.

5.2.5 MICROPHONE AMPLIFIER GAIN CHECK.

a. Connect the balanced audio oscillator output, through the attenuator, to the microphone input at J401, as shown in figure 5-1.
b. Connect the 400 D vtym to the program output, as shown in figure 5-1.
c. Set the MIC level control on the 216C-2 front panel fully clockwise.
d. Set the LINE level control on the $216 \mathrm{C}-2$ front panel fully counterclockwise.
e. Insert an erased tape cartridge into the 642A-2.
f. Press the RECORD switch on the 216C-2.
g. Press the START switch on the 642A-2.
h. Tune the audio oscillator to 1000 cps . Adjust the oscillator output level until the VU meter on the $216 \mathrm{C}-2$ front panel indicates 0 vu .
i. Measure the microphone input voltage at the terminals of the J401. This voltage should be less than 0.56 millivolt. If it is not, replace V404, V401, and V402 and repeat this check.
j. Press the STOP switch on the 642A-2.

5.2.6 LINE AMPLIFIER GAIN CHECK.

a. Connect the balanced audio oscillator output to the LINE INPUT terminals on TB401, as shown in figure 5-1.
b. Connect the 400 D vtvm to the program output, as shown in figure 5-1.
c. Set the MIC level control on the 216C-2 front panel fully counterclockwise.
d. Set the LINE level control on the 216C-2 front panel fully clockwise.
e. Insert an erased tape into the 642A-2.
f. Press the RECORD switch on the 216C-2.
g. Press the START switch on the 642A-2.
h. Tune the audio oscillator to 1000 cps . Adjust the oscillator output leveluntil the VU meter on the $216 \mathrm{C}-2$ front panel indicates 0 vu .
i. Measure the line input voltage at the terminals of TB401. This voltage should be less than -15 dbm . If it is not, replace V401 and V402, and repeat this check.
j. Press the STOP switch on the 642A-2.

TABLE 5-1. RECORDING AMPLIFIER EQUALIZATION CHECK

LINE INPUT		PROGRAM OUTPUT LEVEL (dbv)	
FREQUENCY (cps)	LEVEL (dbm)	MEASURED	LIMITS
50	-5	-16.5 to -17.5	
400	-5	-17	
1000	-5	-16 to -18	
12000	-5		-11.5 to -13.5

5.3 Trouble Shooting.

Table 5-2 lists voltage values at the pins of tubes in the 216C-2 Recording Amplifier. These particular values were obtained from measurements on atypical
operating unit. The voltages may vary slightly from unit to unit without affecting performance. All voltages listed are measured between the tube pin and ground. Use the 410B vtym to make these measurements.

TABLE 5-2. 216C-2 VOLTAGE MEASUREMENTS

TUBE	$\begin{gathered} \text { TYPE } \\ \text { VOLTAGE } \end{gathered}$	TUBE PIN NO.								
		1	2	3	4	5	6	7	8	9
V401	$\begin{aligned} & \mathrm{D}-\mathrm{C} \\ & \mathrm{~A}-\mathrm{C} \end{aligned}$	+118	0	+5.5			+95	0	+4	
					3.2	3.2				3.2
V402	$\begin{aligned} & \mathrm{D}-\mathrm{C} \\ & \mathrm{~A}-\mathrm{C} \end{aligned}$	+100	0	+0.85			+97	0	+1.1	
					3.2	3.2				3.2
V403	D-C	$\begin{array}{r} *+330 \\ * *+180 \end{array}$	$\begin{array}{r} *-68 \\ * * 0 \end{array}$	$\begin{gathered} * 0 \\ * *+6.3 \end{gathered}$			$\begin{array}{r} *+330 \\ * *+180 \end{array}$	$\begin{array}{r} *-68 \\ * * 0 \end{array}$	$\begin{gathered} * 0 \\ * *+6.3 \end{gathered}$	
	A-C	$* 0$ $* * 28$	$\begin{array}{r} * 9.4 \\ * * 8.2 \end{array}$	$\begin{gathered} * 0 \\ * * 4.5 \end{gathered}$	3.2	3.2	$* 0$ $* * 28$	$\begin{array}{r} * 9.4 \\ * * 8.2 \end{array}$	$\begin{gathered} * 0 \\ * * 4.5 \end{gathered}$	3.2
V404	$\begin{aligned} & \mathrm{D}-\mathrm{C} \\ & \mathrm{~A}-\mathrm{C} \end{aligned}$	+160	0	+1.2			+190	0	+1.6	
					3.2	3.2				3.2
V405	D-C	+200	0	+21			+177	0	+1.4	
	A-C	62		13	3.2	3.2	$\begin{array}{r} * 0 \\ * * * 12 \end{array}$	$\begin{gathered} *_{0} \\ * * * 0.6 \end{gathered}$	$\begin{gathered} * 0 \\ * * * 1.1 \end{gathered}$	3.2

[^1]
seclion
 6

parts list

ITEM	DESCRIPTION	COLLINS Part number
	216C－2 RECORDING AMPLIFIER	522－3496－00
C401	CAPACITOR，FIXED，ELECTROLYTIC：dual section， 20 uf $-10 \%+40 \%$ ， 450 v d－c	183－1485－00
C402	CAPACITOR，FLXED，PAPER： 0.047 uf $\pm 10 \%$ ， 400 v d－c；Sprague Electric Co．part no．160 P47394	931－0295－00
C403	CAPACITOR，FIXED，MICA： 68 uII $55 \%, 500 v$ d－c，MIL type CM05E680J03	912－2804－00
C404	CAPACITOR，FIXED，CERAMIC： 10,000 UuI $\pm 20 \%$ 500 v d－c	913－3013－00
C405	CAPACITOR，FIXED，PAPER： $0.1 \mathrm{UF} \pm 10 \%, 400 \mathrm{v}$ d－c；Sprague Electric Co．part no．160P10494	931－0298－00
C406	CAPACITOR，FIXED，ELECTROLYTIC： 30 ui － 10 \％$+100 \%$ ， 15 v d－c；Sprague Electric Co．part no．D33930	183－1166－00
C407	Capacitor，varlable，ceramic：－ 20 uuf mm to 125 uut max， 500 vd de；Centralab part no． 823AN	917－1004－00
C408	NOT USED	
C409	CAPACITOR．FIXED，PAPER： $0.47 \mathrm{uf}+20 \% .400$ v d－c，Sprague Electric Co．part no．160P47404	031－6840－00
C410	CAPACITOR，FIXED，MICA： 330 uuf $\pm 10 \%, 500 v$ d－c；MLL type CMOSD $331 K 03$	912－2853－00
C411	CAPACITOR，FIXED，PAPER：same as C405	931－0299－00
C412	CAPACITOR，FIXED，MICA． 470 uuf +5 登， 500 v d－c；MIL type CM06F471J03	012－2974－00
C413	CAPACITOR，FIXED，CERAMIC： 0.1 uf－ 20% $+80 \%, 500$ v d－c；Sprague Electric Co．of Wisconsin рагt no．41C82	013－3152－00
C414	CAPACITOR，FIXED．CERAMIC：same as C4i3	913－3152－00
C415	CAPACITOR，FIXED，MICA： 1800 uul $\pm 2 \%, 500 \%$ d－c；MIL type CM06F182G03	012－3018－00
C416	CAPACITOR，FIXED．AIICA： 6800 uuf $\pm 2 \%, 500$ vdew；MIL type CMOTF682G03	912－2722－00
C417	CAPACITOR，FIXED，PAPER： 0.5 uf -10% 20岩． 200 v d－c；Sangamo Electrle Co．Capzeitor Diviston part no． 330205	931－0168－00
C418	CAPACITOR，FLXED，ELECTROLYTIC：same as C401	183－1485－00
C419	CAPACITOR，FIXED，CERAMIC：same as Cal3	813－3152－00
C420	CAPACITOR．FLXED．ELECTROLYTIC：same as C406	183－1166－00
C421	CAPACITOR．FIXED．ELECTROLYTIC： 10 uf $-10 \%+100$ v． 150 v d－c；Sprague Electric Co．part no．D36582	183－1789－00
C422	CAPACITOR，FIXED，ELECTROLTYIC：same as C401	183－1485－00
C423	CAPACITOR，FIXED，PAPER：same as C420	931－0295－00
C424	CAPACITOR，FIXED，MICA：same as C403	912－2804－00
C425	CAPACITOR，FIXED，PAPER：same as C402	831－0295－00
C426	CAPACITOR，FIXED，CERAMIC：same as C404	913－3013－00
C427	NOT USED	
C428	NOT USED	
C429	NOT USED	
C430	CAPACITCR，FIXED，CERAMIC：samic as C413	913－3152－00
C431	CAPACITOR，FIXED，ELECTROLYTIC： 8 uf－10\％ +100 f， 25 v d－c；Sprague Electric Co．part no． D31582	183－1167－00
C432	CAPACITOR，FIXED，MICA：same as C412	812－2974－00
C 433	CAPACITOR，FIXED．ELECTROLYTIC：dual section， $50 \mathrm{ut}, 450 \mathrm{vd}-\mathrm{c}$ beth sections，$-10 \% \cdot 50 \%$	183－1487－00
C434	CAPACITOR，FIXED．Electrolytic： 500 uf $-10 \%-100 \%$ ， 50 v d－c；Sy 1：0，D33642	183－1402－00
C435	CAPACITOR，FIXED，CERAMIC：same as C404	913－3013－00
C436	CAPACITOR．FIXED，CERAMIC：same as C404	913－3013－00
C437	CAPACITOR．FIXED．CElRAMIC：same as C413	913－3152－00
C438	CAPACITOR，FIXED，PAPER： $0.01 \mathrm{UI} \pm 10 \%, 600$ v d－c；Sprague Electric Co．part no．160110396	031－0289－00

ITEM	DESCRIPTION	COLLINS part number
C439	CAPACITOR，FIXED，PAPER： 0.0015 uf $\pm 10 \%$ ． 1000 v d－c；Sprague Electric Co．part no． 160P152910	931－0279－00
C440	CAPACITOR，FIXED．PAPER：same as C439	931－0278－00
C441	CAPACITOR，FLXED，Paper：same as C402	931－0205－00
C442	CAPACITOR，FLXED．PAPER：same as C438	931－0289－00
C443	CAPACITOR，FIXED，Paper：same as C438	931－0289－00
C444	Capacitor，FIXED．Ceramic：same as C404	913－3013－00
C445	CAPACITOR，FIXED，ELECTROLYTIC： 10 uf $-10 \%+100$ ，, 450 y d－c；Sprague Electric Co． part no．D36250	183－1791－00
Cr401	SEMICONDUCTOR DEVICE，DIODE：germanium； JEDEC type 1 N Go	353－2010－00
Cr402	SEMICONDUCTOR DEVICE，DIODE：germanium； hermetically scaled；JEDEC type 1 N198	353－0160－00
Cr403	RECTIFIER：Silicon；axial lead mounted；JEDEC type intige3	353－1663－00
Cr404	SEMICONDUCTOR DEVICE，DIODE：silicon； JEDEC type IN1G96	353－1898－00
CR405	SEMICONDUCTOR DEVICE，DIODE：same as Cri404	353－1898－00
CR406	SEmiconductor device，diode：same as Cr404	353－1888－00
Cr407	SEMICONDUCTOR DEVICE，DIODE：same as CH404	353－1898－00
Cr408	RECTIFIER：same as CR403	353－1663－00
CR400	RECTIFIER：same as Cri403	353－1663－00
CR410	RECTIFIER：same as CR403	353－1663－00
CR411	RECTIFIER：same as Cr403	353－1663－00
DS401	LAMP，INCANDESCENT，miniature single con－ tact midget fange base for use with T－1－3／4 clear bulb； 14 y， 0.08 amp ，Gencral Electric Co．part no． 330	262－0309－00
DS402	Lamp，incandescent：midget，fange base， 28 v d－c max； $0.40 \mathrm{amp}, \mathrm{T}-1-3 / 4$ bulb；C－2F filament；AN．type AN3140	262－1106－00
F401	FUSE，CARTRIDGE：glass case； 1 amp， 250 v d－c； $1 / 4 \mathrm{in}$ ．dia by $1-1 / 4 \mathrm{in}$ ．1g；MIL type F02A250VIAS	264－4050－00
H 1	SPACER，SLEEVE：aluminum； 0.037 in ，thk wall $0.218 \mathrm{in} . \mathrm{OD}, 0.187 \mathrm{in} . \mathrm{lg}$	541－6002－002
H2	JUMPER，BARRIER；brass，cadmium plated； 0.015 im ．by 0.250 in ．by 0.650 in ．；Kulka Electric M1fg．Co．Inc．part no．600－J	367－0854－00
H3	BUTTON，CABLE：plastic；4－40 NC－2B internal Whal； 0.312 in ．hex by 0.250 ln Ig o／a	541－5178－002
H4	BUTTON，CABLE：nylon plastic；4－40 NC－2B interual did； 0.375 in ．hex by 0.312 in ．Ig $0 / \mathrm{a}$	541－5179－002
H5	BUTTON，CABLE：nyloh plastic； $\mathbf{4 - 4 0} \mathrm{NC}-2 \mathrm{~B}$ internal thd； 0.437 in ．hex by $0.375 \mathrm{in} . \mathrm{Ig} \circ / \mathrm{a}$	541－5180－002
J401	CONNECTOR，RECEPTACLE，ELECTRICAL： 3 female contacts 15 amp；Cannon Electric Co． part no．XLR－3－13	370－2019－00
J402	CONNECTOR，RECEPTACLE，ELECTRICAL： 15 female contacts， 3 contacts at $15 \mathrm{amp} ; 12$ contacts 5 amps； 500 vims；Cinch Mir Con）．part no． 47A－16027	372－1081－00
K401	RELAY，ARMATURE： 2 c contact arrangement； 2 amp at 115 va a cesistive； 5000 olms coil resistance，contiruous duty cycle；Potter and Brunfield，Inc．part no．KR2日32	970－2169－00
K402	RELAY，ARMATURE： 4 c contact arrangement； low level or up to 2 amp at 28 v resistlve； 24 y ci－c coil voltage； 650 ohms coll resistance；continuous duty cycle；Potter and Brumficld，Inc．part no． KHP17D13	970－2257－00
K403	TELAY，ARMATURE：same as K402	970－2257－4
K404	RELAY，ARMATUIEE：same as K402	870－2257－06

ITEM	DESCRIPTION	COLLINS part number
L401	COIL, RADIO FREQUENCY: $22 \mathrm{ul} \pm 10 \%, 0.31$ ohms d-c max resistance; 1330 ma ; powdered iron coil form; Jelfers Electronics part no. 10404-20	240-0186-00
1402	COIL, RADIO FREQUENCY: same as L401	240-0186-00
L403	COIL. RADIO FREQUENCY: universal wound: 3 or 4 pi, 5 mh , n 40 AWg wire; carbonyl form; Delevan Electronics Corp. part no. BP218	240-0312-00
M401	AMMETER. de microammeter for u/as a vu meter; 0.200 microamp, 750 ohms approx; -1 to $-20 \mathrm{ccw} ;+1$ to, 3 cw ; black and red markings, white dal background; Assembly Products. Inc. part no. 36-4750-0000	458-0593-00
MP1	PANEL, FRONT: aluminum. gray finish; 0.187 in. Lik: 5.218 in . by 15 in .	549-4990-003
MP2	COVER, AMPLIFIER, BOTTOM: steel, gray enamel finish; 0.0359 in . thk, 12-15/32 in. by 13 in .	549-4984-003
MP3	COVER, AMPLIFIER, TOP: steel, gray enamel finish; 0.0359 in . Llk, 12-15/32 in, by 13 in .	549-4985-003
MP4	PANEL, SDE, LEFT: steel, gray enamel finish, 0.500 in . by 9.781 in . by 12.500 in .	549-4089-003
MP5	PANEL, SIDE, RIGHT: steel, gray enamel finish; 0.500 in . by 4.781 in , by 12.500 in .	549-4988-003
MP6	PLATE, COVER: steel, cadmium plated; 1-1/16 b) $1-1 / 4 \mathrm{in}$.	548-8147-002
MP7	BRACKET, RELAY: stainless steel, passivate finish 0.594 in . by 0.750 m . by 0.9687 in .	553-7268-003
MP8	BRaCKET, RELAY: same as mpt	553-7268-003
MPg	BRACKET, RELAY: same as MP7	553-7268-003
MP10	COVER ASSEMBLY: w/right angle cable entry for 15 contact socket connectors; $7 / 16 \mathrm{in}$. cable opentug $1-1 / 16 \mathrm{in}$. by $1-3 / 8 \mathrm{in}$. by $2-1 / 8 \mathrm{it}$.	549-4529-002
MP11	COVER, ASSEMBLY: sąme as MP10	549-4529-002
01	KNOB: biack phenolic shell, aluminunı skirt, 1.562 in. dia and black plastic setscrew knob w/metal insert; 1.5625 ill . dia, 0.765 in . w o/a	549-1023-003
O2	KNOB. same as Ol	549-1023-003
P401	CONNECTOR, RECEPTACLE, ELECTRICAL: 15 round male contacts, 1 connector mating cud; 3 contacts $15 \mathrm{amp}, 12$ contacts 5 amp ; Cinch Mig. Corp. part no. 472-21-02-092	372-1079-00
P402	CONNECTOR, RECEPTACLE, ELECTRICAL: same as Pl	372-1079-00
P403	aDAPTER, CONNECTOR: 2 maling ends, 3 conthets ea end, plastic dielectric, a-c plug 110 v ; Pass \& Seynour Ind. part no. 1919	368-0110-00
R401	NOT USED	
R402	NOT USED	
R403	NOT USED	
R404	NOT USED	
R405	RESISTOR, FIXED, COMPOSITION: 0.56 megohms $\pm 10_{n}^{\prime \prime}, 1 / 2 \mathrm{w}$; M1L type RC20GF564K	745-1468-00
R406	resistor, varlable, COMPOSITION: 100,000 ohms $\pm 30 \% 1,4$ w; Chicago Telephone Supply Co. part no. LL5883	376-2480-00
R407	RESISTOR, FIXED, COMPOSITION: 22,000 ohms $\pm 10_{0}^{\text {mon }}, 1 / 2 \mathrm{w}$; MIL type RC20GF223K	745-1408-00
R408	RESISTOR, FIXED, COMPOSITION: 82,000 ohms ± 10 个., $1 / 2 \mathrm{w}$, MiL type RC20GF823K	745-1433-00
R409	RESISTOR, FIXED, COMPOSITION: 0.33 megolm it 10%, $1 / 2 \mathrm{w}$; MIL type RC20GF334K	745-1457-00
R410	RESISTOR, FIXED, COMPOSITION: 2200 olms ± 10 \%. 1/2 w; MIL type RC20GF222K	745-1366-00
R411	RESISTOR, FIXED, COMPOSITION: 10,000 ohms $+10 \%$. $1 / 2 \mathrm{w}$; MIL type RC20GF103K	745-1394-00
R412	RESISTOR, FIXED, COMPOSITION: 5600 ohms, =10, 2 w; MiL tyie RC20GF562K	745-1384-00
R413	RESISTOR, FIKED, COMPOSITION: 82,000 ohms $\pm 10 \%, 1 \mathrm{w}$; M1L type RC32GF823K	745-3433-00
R414	RESISTOR, FIXED, COMPOSITION: 3300 olms $\pm 10 \%, 1 / 2$ w; MiL type RC20GF332K	745-1373-00
R415	IESISTOR, FIXED, COMPOSITION: 0.10 megohm $\pm 10_{\%}^{\%}, 1 / 2$ w; MIL type RC20GF104K	745-1436-00
R416	RESISTOR, FIXED, COMPOSITION: 1.0 megohms $\pm 10 \%, 1 / 2$ w; MIL type RC20GF105K	745-1478-00
R417	RESISTOR, FIXED, COMPOSITION: 47,000 ohms $\pm 10 \% 1 / 2 \mathrm{w}$; MIL type RC20GF.473K	745-1422-00
R418	RESISTOR, FIXED, COMPOSITION: same R415	745-1436-00
R410	RESISTOR, FIXED, COMPOSITION: 56,000 ohms $\pm 10^{\prime \prime}, 2$ w: MIL type RC42GF563K	745-5726-00
R420	RESISTOR. FIXED, COMPOSITION: 330 ohms +10\%. 1/2 w; MIL type RC20GF331K	745-1331-00
R421	RESISTOR, VARIABLE, COMPOSITION: 250,000 ohms $\star 30,1 / 4$ w; Chicago Teleplone Supply Co. part no. Ll. 6064	376-4734-00
R422	RLSISTOR, FIXED, COMPOSITION: same as R415	745-1436-00

ITEM	DESCRIPTION	collins pART NUMBER
18423	RESISTOR, FIXED, COMPOSITION: 'same as R411	745-1394-00
18424	RESISTOR, FIXED, COMPOSITION: 220 ohms $\pm 10 \%, 1 / 2 \mathrm{w}$, MLL type RC20GF221K	745-1324-00
8425	RESISTOR, FIXED, COMPOSITION: same as R408	745-1433-00
R42G	NOT USED	
$\mathrm{R427}$	RESISTOR, FIXED, COMPOSITION: 56,000 ohms ± 10 \%, $1 / 2 \mathrm{w}$; MIL type RC20GF563K	745-1426-00
R428	RESISTOR, FIXED, COMPOSITION: same as R415	745-1436-00
R 429	RESISTOR, FLXED, COMPOSITION: 1200 ohms $\pm 10 \% .1$ w; MLL type RC 32 GF 122 K	745-3356-00
R 430	RESISTOR, FIXED, COMPOSITION: 560 ohms $\pm 10 \mathrm{G}, 1 / 2 \mathrm{w}$; MLL type RC2OGF561K	745-1342-00
R431	RESISTOR, FLXED, COMPOSITION: 33,000 ohms $\pm 10 \%, 1 / 2 \mathrm{w}_{;}$MIL type RC20GF333K	745-1415-00
R432	RESISTOR, FIXED, COMPOSITION: same as R415	745-1436-00
R433	RESISTOR, VARLABLE: composition; 10,000 ohms $\pm 30 \% 1 / 4 \mathrm{w}$; Chicago Telephone Supply Co. part no. LL6063	376-4730-00
R434	RESISTOR, FIXED, COMPOSITION: 10,000 ohms =10\%, 2 w ; MIL type RC42GF103K	745-5694-00
R435	RESISTOR, FLXED, COMPOSITION: same as R431	745-1415-00
R436	RESISTOR, FIXED, COMPOSITION: same as R409	745-1457-00
R437	RESISTOR. FIXED, COMPOSITION: same as R417	745-1422-00
R438	RESISTOR. FIXED, COMPOSITION: Same as R415	745-1436-00
R439	RESISTOR, FIXED, COMPOSITION: 1200 ohms $\pm 10^{\prime}$ o. $1 / 2 \mathrm{w}$; MIL type RC20GF12 2 K	745-1356-00
R440	RESISTOR, VARIABLE, COMPOSITION: same as R4OG	376-2480-00
R441	RESISTOR, FIXED, COMPOSITION: same as R417	745-1422-00
R442	RESISTOR, FIXED, COMPOSITION: same as R415	745-1436-00
R443	RESISTOR, FIXED, COMPOSITION: same as R410	745-1366-00
R444	RESISTOR, FIXED, COMPOSITION: same as R409	745-1457-00
R.445	RESISTOR, FIXED, COMPOSITION: 4700 ohms 2 $10 \%, 1 / 2 \mathrm{w}$, type RC20GF472K	745-1380-00
R446	RESLSTOR, FIXED, COMPOSITION: same as R415	745-1436-00
R447	NOT USED	
R448	RESISTOR, FIXED, COMPOSITION: same as R407	745-1408-00
R448	RESISTOR, FIXED, COMPOSITION: 220,000 ohms $\pm 10 \%, 1 / 2$ w; MLL type RC20GF224K	745-1450
R450	RESISTOR, FIXED, COMPOSITION: 1500 ohms $\pm 106.1 / 2$ w; MIL type RC20GF152K	745-1359-00
R451	RESISTOR, FIXED, COMPOSITION: 0.47 megohm $\pm 10.0,1 / 2$ w, MLL type RC20GF474K	745-1464-00
R 452	RESISTOR, FIXED. COMPOSITION: same as R424	745-1324-00
R453	RESISTOR, FIXED. COMPOSITION: same as R453	745-5694-00
R454	RESISTOR, FIXED, COMPOSITION: same as R430	745-1342-00
$R 455$	RESISTOR, FIXED, COMPOSITION: 120,000 ohms ± 10 fo, 2 w ; Mul type RC42GF124K	745-5740-00
R456	RESISTOR, FIXED, COMPOSITION: 10,000 obms $\pm 10 \%$, 1 w , MIL type RC32GF103K	745-3394-00
18457	RESISTOR, FIXED, COMPOSITION: 1800 ohms ± 10 io, 2 w ; MIL type RC42GF182K	745-5663-00
R458	RESISTOR, FIXED, COMPOSITION: same as R457	745-5663-00
R459	RESISTOR, FIXED, COMPOSITION: same as R456	745-3394-00
R460	RESISTOR, FIXED. COMPOSITION: 120 ohms ± 10.f. 1 w ; MIL type RC32GF121K	745-3314-00
R 461	RESISTOR, FIXED, COMPOSITION: 0.15 megohms $\pm 10 \%, 2 \mathrm{w}$, MLL type RC42GF154K	745-5743-00
R462	RESISTOR, FIXED, COMPOSITION: same as R461	745-5743-00
R463	RESISTOR, FIXED, COMPOSITION: same as R424	745-1324-00
R464	RESISTOR, FIXED, COMPOSITION: 270 ohms $\pm 10 \%$, $1 / 2$ w; MIL type RC20GF271K	745-1328-00
R465	RESISTOR, FIXED, COMPOSITION: same as R457	745-5663.00
${ }^{1266}$	RESISTOR, FIXED, COMPOSITION: same as R430	745-1342-00
R. 167	RESISTOR, FIXED, COMPOSITION: same as R455	745-5740-00
R468	NOT USED	
R469	RESISTOR, FIXED, COMPOSITION: 560 ohms $\pm 10 \%, 1$ w, MIL type RC 32 GF 56 K	745-3342-00
8470	RESISTOR, FIXED, COMPOSITION: 1000 ohms $\pm 10 \%$. $1 / 2 \mathrm{w}$; MIL type RC20GF102K	745-1352-00
R471	RESISTOR, FIXED. COMPOSITION: same as Ralls	745-1436-00
8472	RESISTOR, FIXED, COMPOSITION: same as R415	745-1436-00
$\mathrm{R473}$	RESISTOR, FLXED, COMPOSITION: 12,000 ohms $\pm 10 \% .1 / 2$ w; MIL type RC20GF 123 K	745-1398-00
8474	RESISTOR, FLXED, COMPOSITION: 0.12 megohm 10 10 , $1 / 2 \mathrm{w}$; MLL type RC20GFI24K	745-1440-00
R475	RESISTOR, FIXED, COMPOSITION: same as R474	745-1440-00
18476	RESISTOR, FIXED, COMPOSITION: same as R407	745-1408-00
8477	RESISTOR, FIXED, COMPOSITION: same as R455	745-5740-00
R478	RESISTOR, FIXED, COMPOSITION: same as R413	745-3433-00
S401	SWITCII PUSH, ILLUMANATED: spst, 120 vac. 3 amp nomnductive, 1 ampinductive; Pendar Co. part ino. 56-1118L41R	266-6149-00

ITEM	DESCRIPTION	COLLINS PART NUMBER
S402	SWITCH, PUSH: spst (2 circuit) momentary; yellow lens; black adnpter; Pendar Co., Inc. part no. 56-1018L41Y	266-6159-00
T401	TRANSFORMER, AUDIO FREQUENCY: pri 600 ohms, 50 ohmis, 250 ohms ct; sec. 85,000 ohms; 30 to $15,000 \mathrm{cps}$; continuous duty cycle; Triad Transformer Corp. part no. A-8J	667-0006-00
T402	NOT USED	
T403	TRANSFORMER, AUDIO FREQUENCY: same as TAO1	667-0006-00
T404	TRANSFORMER, POWER, STEP-UP AND STEPDOWN: prinary 115 vrms, secondary 6.3 vrns, CT, 2.7 amp, 600 urns, secondary 6.3 vrms, CT, 2.7 amp, $600 \mathrm{vrms}, \mathrm{CT}, 0.065 \mathrm{amp} ; 50 / 60 \mathrm{cps} ;$ continuous duty cyele; American Mignetics Corp. part no. AM-2157	662-0050-00
TB1	TERMINAL BOARD: phenolic $w / 3$ solder-lug terminals $11 / 16 \mathrm{in}, \mathrm{w}$ by $1-1 / 8 \mathrm{in}, \mathrm{lg}$; Cinch Mfg. Corp. part no. 1520-A	306-9033-00
TB2	TERMINAL BOARD: phenolic; $1 / 16 \mathrm{in}$. by $3 / 8 \mathrm{kn}$. by $1-1 / 2$ in.; 4 brass solder lug terminals; Cinch Mig. Corp. part no. 1532-A	306-9032-00
TB3	TERMLNAL BOARD: same as TBl	306-9033-00
TE4	TERMINAL BOARD: phenolic, $w / 5$ solder-lug terminals; $1-7 / 8 \mathrm{in}$. Ig by $11 / 16 \mathrm{in}, \mathrm{w}$; Cinch MIg. Corp. part no. 1542-A	306-0550-00
TB5	TERMINAL BOARD: samme as TB4	306-0550-00
TB6	TERMINAL GOARD: same as TB4	306-0550-00
TB7	TERMINAL BOARD: phenolle $w / 4$ wiring lugs, 1 mounting lug; J/B in. w by 1-1/2 in. Ig; Cinch Mfg. Corp. part no. 1909	367-1059-00
TB8	NOT USED	
TEO	TERMINAL BOARD: same as TBl	306-0033-00
TB10	TERMINAL BOARD: same as TB4	306-0550-00
TBI1	TERMINAL BOARD: same as TB4	306-0550-00
TB12	TERMLIAL BOARD: same as TB4	306-0550-00
TB13	TERAINAL BOARD: same as TB4	306-0550-00
TB14	NOT USED	
TB15	TERMINAL BOARD same as TE4	306-0550-00
TB16	TERMINAL BOARD: same as TB2	306-9032-00
TB17	TERMINAL BOARD: same as TB7	367-1059-00
TB18	TERMINAL BOARD: samie as TBl	306-9033-00

ITEM	DESCRIPTION	COLLINS PART NUMBER
TB18	NOT USED	
TB20	TERMINAL BOARD: same as TB4	306-0550-00
TB21	TERMINAL BOARD: same as TB4	306-0550-00
TB22	TERMLNAL BOARD: same as TBl	306-9033-00
TB23	TERMINAL BOARD: same as TB2	306-9032-00
TB24	TERMINAL BOARD: same as TB4	306-0550-00
TB401	TERMINAL BOARD: phenolic; barrier type w/lug for back commection, 5 terminals; Howard B. Jones parit no. 353-18-05-001	367-0013-00
V401	ELECTRON TUBE: twin triode; Radlo Corp. of America part no. 12AU7	255-0199-00
V402	ELECTRON TUBE: twin trlode type; Radio Corp. of America part no. 12AT7	255-0205-00
V403	ELECTRON TUBE: twin triode; Tun Sol Electric, Luc. part no, 12 BH 7	255-0302-00
V404	ELEC'TRON TUBE: low noise twh triode; Amperex Electromics Co. Division ol North American Phillips Co. part no. ECC83/12AX7	255-0386-00
V405	ELECTRON TUBE: double triode; General Electric Co. part no. 7247	255-0368-00
WI	CABLE ASSEMBLY, SPECLAL PURPOSE. ELEC TRICAL; 3 conductors H 18 AWG; 125 vrms working voltage; 0.325 in . dia by $6 \mathrm{ft} 0.843 \mathrm{in} . \mathrm{lg} \mathrm{o} / \mathrm{a}$; one end terminated w/plug connector; Belden Mig. Co. part no. KH3491	426-1464-00
W2	CABLE, RADIO FREQUENCY: coaxial; 1500 vrms working veltage, 50 ohms impedance, 7 strands ¿34 AWG copper covered steel wire inner conductor; single braid e38 AWG timned copper wire outer conductor; Communication Electronic Numenclature Sutpianel part no. RG-174/U	425-1005-00
XF401	FUSEHOLDER: extractor post type; 250 v, 15 amp; accommodates one 0.250 in . dia by $1.250 \mathrm{in} . \mathrm{lg}$ cartridge [use $w /$ ferrule terminals; 0.687 in . dia by $2,140 \mathrm{in} . \lg$ o/a dim.; Bussman Fuse part no. HKP-HIR-ZZ	265-1018-00
XV401	SOCKET, ELECTRON TUBE: type E naval contact configuration, plastic; MiL type TS103P01	220-1103-00
XV402	SOCKET, ELECTRON TUBE: same as XV401	220-1103-00
XV403	SOCKET, ELECTRON TUBE; same as XV401	220-1103-00
XV404	SOCKET, ELECTRON TUBE: same as XV401	220-1103-00
XV405	SOCKET, ELECTRON TUBE: same as XV401	220-1103-00

Figure 6-1. 216C-2 Recording Amplifier, Parts Identification (Top View)

Figure 6-2. 216C-2 Recording Amplifier, Parts Identification (Bottom View) (Sheet 1 of 2)

Figure 6-2. 216C-2 Recording Amplifier, Parts Identification (Bottom View) (Sheet 2 of 2)

Unit Instructions

Magnetic Tape Cartridges

unit instructions

1.1 GENERAL DESCRIPTION.

The magnetic tape cartridges (see figure 1) used with Collins Tape Cartridge System eliminate tape spilling, breaking, and accidental erasing. The cartridges consist of an endless loop of lubricated tape on a freeturning reel. Figure 2 shows the cartridge parts.

The reel used in the cartridges is the same as a standard reel with the top side removed. On a cartridge reel, however, the beginning of the tape is near the hub of the reel and the end of the tape on the outside as shown in figure 3. To make the tape loop continuous, the beginning and end of the tape are merely spliced together, as shown in figure 4.

Figure 1. Magnetic Tape Cartridges

Figure 2. Magnetic Tape Cartridge, Exploded View

C754-54-3
Figure 3. Tape on Cartridge Reel (Unspliced)

c754.49.3
Figure 4. Tape on Cartridge Reel (Spliced)

If the reel is placed on a spindle and tape is pulled from the begimning (inside) of the reel, it will rewind on the outside of the reel. Since the outside diameter is greater than at the hub, the tape will rewind faster than it is unwinding, and the free tape loop will get smaller. If the tape were not allowed to slip upon itself, the free loop would eventually become so small that the tape would bind and stop. For this reason, tape used in cartridges must be lubricated with a special compound so that it can slip upon itself. Then, each turn of tape on the reel moves when tape is pulled from the inside of the reel, allowing tape to be pulled from the inside as fast as it is being wound on the outside.

In the cartridge, the tape loops out from the center of the reel, travels around a guide post, across the heads, around another guide, and is wound back on the outside of the supply reel.

Preloaded cartridges are available with 17 different lengths of tape, ranging in running time from 40 seconds to 31 minutes. Table 1 lists the cartridges that are available from Collins Radio Company. Blank cartridges are also available. Paragraph 2.2 contains instructions for loading the blank cartridges.

TABLE 1. TAPE CARTRIDGES AND ASSOCIATED EQUIPMENT

CARTRDGE TYPE	TAPE PLAYING TIME	COLLINS PART NUMBER
Series 300	40 sec	
Series 300	70 sec	$097-5205-00$
Series 300	90 sec	
Series 300	$097-5206-00$	
Series 300	$2-1 / 2 \mathrm{~min}$	$099-0191-00$
Series 300	3 min	$099-0192-00$
Series 300	$3-1 / 2 \mathrm{~min}$	$099-0193-00$
Series 300	$099-0194-00$	
Series 300	$5-1 / 2 \mathrm{~min}$	$097-5207-000$
Series 300	$7-1 / 2 \mathrm{~min}$	$099-0195-00$
Series 300	10 min	$097-5208-00$
Series 300	$10-1 / 2 \mathrm{~min}$	$099-0196-00$
Series 600	11 min	$099-0197-00$
Series 600	$13-1 / 3 \mathrm{~min}$	$097-5209-00$
Series 600	15 min	$099-0198-00$
Series 600	16 min	$099-0199-000$
Series 1200	31 min	$099-0200-00$
Series 300 (blank)	--	$097-5210-00$
Series 600 (blank)	--	$097-5211-00$
Series 1200 (blank)	-	$097-5528-00$
Head Alignment	70 sec	$097-5914-00$
Tape		$097-5915-00$
Magneraser Model	--	$097-6076-00$
200C Tape Eraser		$097-5172-00$

2.I NEW CARTRIDGES.

Visually inspect new tape cartridges for loose mounting screws, pressure pads, and for any shipping damage. Check to be sure that the tape is in its proper operating path. After this inspection, run through the tape several times to ensure smooth pullout of tape from the inside of the reel.

2.2 LOADING PROCEDURE FOR BLANK CARTRIDGES.

To load blank or prerecorded tape onto a cartridge reel, using a standard reel-to-reel recorder, perform the following steps.

CAUTION

Be sure that the tape being loaded has been especially lubricated for use in tape cartricges. Use Collins part number 097-5852-00 (Minnesota Mining MM151) or equivalent.
a. If the tape being loaded has been prerecorded, cut the tape approximately one foot beyond the end of the recorded material.
b. Remove the supply reel from the recorder. Then remove the take-up reel, with the recorded tape,

Figure 5. Preparing to Splice Tape (No. 1)
from the take-up spindle. Without turning this reel over, place it on the supply spindle.
c. Place an empty reel on the recorder take-up spindle and rewind the recorded tape fast forward in the normal manner. Note that after this has been done, the recorded information now faces away from the recording head.
d. Place an empty cartridge reel on the recorder supply spindle. Wind a few turns of tape around the reel hub, and by means of fast rewind, wind the recorded tape on the cartridge reel. Keep as little back-tension as possible on the supply reel during this rewinding.

Whenever loading tape on a cartridge reel, keep in mind the following points: (1) The cartridge reel
must revolve clockwise during loading of recorded information. (2) The tape must be loaded with the recorded information facing outward. (3) The start of the program material must be at the hub of the cartridge reel when starting to load. (4) Tape should be fed to the cartridge reel during loading with as little back-tension as possible on the supply reel.

2.3 SPLICING TAPE ON A CARTRIDGE REEL.

a. Place the loaded reel on a flat surface. While holding the hub of the reel firmly with the right hand, pull about 18 inches of tape from the outside of the reel as shown in figure 5. The tape should be loose enough on the reel to slip off without having to turn the reel.

Figure 6. Preparing to Splice Tape (No. 2)

Figure 7. Placing Reel into Cartridge
b. Remove about 9 inches of tape from the inside of the reel by pulling gently on the free end of the tape near the reel hub as in figure 6. Do this carefully to avoid spilling tape from the reel.
c. After making sure that there are no twists in either the begimning or end of the tape, place the two ends of the tape on a splicer and splice the tape in a normal manner (oxide to oxide). Use mylar-base splicing tape.

2.4 LOADING THE CARTRIDGE REEL INTO CARTRIDGE.

a. After the tape has been spliced, place the reel in the cartridge with the head openings facing front. See figure 7.
b. With the left hand, release the reel locking spring over the opening in the bottom left of the cartridge as in figure 8. This will allow the reel to turn. Then, with the right hand, pull the tape from the inside of the reel until the slack in the free tape loop has been taken up.
c. Refer to figure 9. Place the tape around the corner guide post, through the front guide slots, and around the left guides as shown in the figure. To check for correct slack, pull the slack tape out of one of the head openings. The loop should extend between one and two inches for best performance.
d. Turn the cartridge so that the rear of the cartridge is facing front. Pass the straight guide wire under the tape coming from the hub, and insert the front and rear ends of the guide in the holes or slots provided at the front and rear of the cartridge.

Refer to figure 9. On the Series 1200 (large size) cartridges, place the guide wire with the ' V '" on the right side of the tape reel with the shorter end of the guide facing the front of the cartridge. The " V " gaide wire should rest near, but not touching, the reel hub, and the "V'" portion of the wire should rest lightly on the tape. This is necessary to keep the tape down against the hub. The " V " guide wire is not used with Series 600 and Series 300 cartridges.
e. After the guide wire or wires are in place, put the top on the cartridge and tighten in place with the center screw. While doing this, check to be sure that the reel does not bind on any part of the cartridge, and that the tape or reel motion is not hindered in any way by the guide wires. The reel must be able to turn freely and the tape travel must not be impeded in order for the cartridge to function properly. THIS IS IMPORTANT.
f. After the cartridge is assembled, place it in 642A-2 Recorder/Playback Unit and run through the tape several times to properly position the slack tape.

3.1 GENERAL MAINTENANCE.

Tape cartridges must be maintained and used properly to ensure proper operation. Handle the cartridges carefully to avoid misadjustment that may cause a malfunction. If a cartridge is dropped, audition it once to ensure that it is still operating properly.

Some problems that appear to be caused by faulty tape cartridges may often be caused by misalignment of

TD-528
Magnetic Tape Cartridges

Figure 8. Adjusting Tape in Cartridge

*

the tape mechanism. An improperly adjusted or worn pressure roller, misaligned or dirty heads, or improperly adjusted head bracket assembly, cartridge stop, or cartridge guide can cause recording and playback difficulty.

The guide wire (or wires) should not touch the tape or reel hub. If they do, tape tightening will result. The guide wire should be bent in a slight upward arc and slightly toward the hub, but not touching the hub.

The pressure pads in the cartridges should be bent until they are $1 / 8$ inch from the edge of the cartridge case. If, after repeated cartridge use, the pads become loose in the cartridge, replace them on the spring with a drop of household cement. If the pads become so worn that the tape tension weakens, replace them with new pads, Collins part number 235-0011-00.

Periodically check the tape guide post. It should be fully seated and cemented into the cartridge so that the tape cannot ride up and down during operation.

Each six months, remove the reel from the cartridge and place a thin film of Lubriplate or a similar grease on the center post.

Periodically check the freedom of the reel locking spring. If this locking spring is not operating properly, the reel will not turn and the tape that is being pulled from the inside of the reel will be spilled from the cartridge.

3.2 CORRECTING TIGHT TAPE.

Tape tightening will occur whenever the tape in the cartridge cannot slip upon itself freely. It may be caused by lack of tape lubrication or binding of the tape on one or more of the cartridge parts. When tightening occurs, the reel will not be able to turn and the tape will be torn or damaged.

After a cartridge has been in use for some time, the graphite lubricant on the tape may gradually wear away, causing the tape to tighten. Tape damage due to tightening because of improper lubrication may be prevented by periodic visual checks of the tape. When the tape appears dull on both sides, it is properly lubricated. If the tape becomes very shiny,

C754.48-3
Figure 9. Tape and Guide Wire in Place in Cartridge
the graphite lubricant is wearing off. When this happens, the material on the tape in the cartridge should be rerecorded on lubricated tape. Refer to paragraph 2.2.

3.3 CORRECTING LOOSE TAPE.

If the tape in the cartridge becomes so loose that it loops out of the drive capstan opening or is visibly loose on the reel, tighten it immediately as follows. Remove the top cover and wire guide. Unsplice the tape. Hold the reel to prevent its turning and pull tape from the outside of the reel until the slack has been reduced to normal. Then, turning the reel by hand, wind up all of the excess tape. Resplice the tape and reassemble the cartridge.

3.4 STORING TAPE CARTRIDGES.

Store the tape cartridges in their normal playing position when they are not being used. Avoid heat and strong magnetic fields during storage.

313T-1/3/4

 Remote Control Switching Units
1.1 PURPOSE OF EQUIPMENT.

Remote Control Switching Units $313 \mathrm{~T}-1,313 \mathrm{~T}-3$, and $313 \mathrm{~T}-4$ (see figure 1) furnish remote control of functions controlled by the START, STOP, and RECORD switches on Recorder/Playback Unit 642A-()and Recording Amplifier 216C-().
Unit $313 \mathrm{~T}-1$ can start and stop one 642A-1 and one $216 \mathrm{C}-2$. Unit $313 \mathrm{~T}-3$ can start three 642A-2's. Unit $313 \mathrm{~T}-4$ can start and stop one 642A-2 and one $216 \mathrm{C}-2$, and can start three other 642A-2's.
Figures 3, 4, and 5 are schematic diagrams of the units.

1.2 PHYSICAL DESCRIPTION.

Figures 2-9, 2-10, and 2-11 in the system instruction book, $\mathrm{SP}-178$, give outline and mounting dimensions for Remote Control Switching Units 313T-1, 313T-3, and $313 \mathrm{~T}-4$ respectively. Figure 2 shows parts placement for the three units.

2.1 INSTALLATION PROCEDURES.

Refer to section Π of the system instruction book, SP-178, for installation procedures.

PARTS LIST

ITEM	DESCRIPTION	COLLINS PART NUMEER
	REMOTE CONTROL SWITCHING UNIT 313T-1	522-2550-00
DS501	LAMP, INCANDESCENT: midget flange base, 28 v dc max; 0.40 amp ; $\mathrm{T}-1-3 / 4 \mathrm{bulb} ; \mathrm{C}-2 \mathrm{~F}$ filament LAMP, INCANDESCENT: some as DS5OI LAMP. INCANDESCENT: same as DS501 SWITCH, PUSH: Hghted pushbutton, spdt, momentary 28 v dc, 0.5 amp resistive; orange lens SWITCH, PUSH: lighted pushbutton, spdt, momentary; 28 v dc, 0.5 amp resistive; green lens SWITCH, PUS11: lighted pushbutton, spdt; momentary: 28 v de, 0.5 amp resistlve; yellow lens TERMINAL BOARD: phenolic; barrier type w/ lug for back connection; 4 terminals TERMINAL BOARD: same as TB501	$262-1106-00$ $262-1106-00$
DS503		262-1106-00
S501		282-1106-00
Ssot		268-607-00
S502		266-8069-00
5503		266-6070-00
TB501		367-0012-00
TB502		367-0012-00
REMOTE CONTROL SWITCHING UNIT 313T-3		522-2551-00
S601	SWITCH, PUSH lighted pushbutton; spdt; momentary; 28 v dc, 0.5 amp resistive; green lens SWITCH, PUSH: same as S60I SWITCH, PUSH: same as S601	288-6069-00
S602		268-6069-00
S603		266-6069-00

ITEM	DESCRIPTION	COLLINS PART NUMBER
$\begin{aligned} & \text { TB601 } \\ & \text { TB602 } \end{aligned}$	TERMINAL BOARD: phenolic; barrier type w/ lug for back connection; 4 terminals TERMINAL BOARD: same as TB60	367-0012-00 367-0012-00
	REMOTE CONTROL SWITCHING UNIT 313T-4	522-2552-00
DS701	LAMP, INCANDESCENT: midget flange base, 28 v de max; 0.40 amp , T-1-3/4 bulb; C-2F filament	262-1106-00
DS702	LAMP, INCANDESCENT: same as DS70]	262-1106-00
DS703	LAMP. INCANDESCENT: same as DS701	282-1106-00
S701	SWITCH, PUSH: lighted pushbutton; spdt; momentary; $28 \mathrm{vdc}, 0.5 \mathrm{amp}$ resistive; orange lens	286-8071-00
5702	SWITCH, PUSH: IIghted pushbutton; spdt; momentary; $28 \mathrm{v} \mathrm{dc}, 0.5 \mathrm{amp}$ resistive; green lens	266-6068-00
5703	SWITCH, PUSH: lighted pushbution; spdt; momentary; $28 \vee \mathrm{dc}, 0.5 \mathrm{amp}$ resistive; yellow lens	266-6070-00
5704	SWITCH, PUSH: same as S702	266-6069-00
5705	SWITCH, PUSH: same as S702	266-6069-00
S706	SWITCH, PUSH: same as S702	286-6068-00
TB701	TERMINAL BOARD: phenolic: barrier type w/ lug for back connection; 8 terminals	367-0018-00
TB702	TERMINAL BOARD: same as TH701	367-0016-00

313T-3

REMOTE CONTROL SWITCHING UNITS

C754-40-P
Figure 1. Remote Control Switching Units 313T-1/3/4

313T-4

754-41-P
Figure 2. Remote Control Switching Units $313 \mathrm{~T}-1 / 3 / 4$, Rear Views

Figure 3. Remote Control Switching Unit 313T-1, Schematic Diagram

Figure 4. Remote Control Switching Unit 313T-3, Schematic Diagram

Figure 5. Remote Control Switching Unit 313T-4, Schematic Diagram
C754-44-3

SERVICE INFORMATION LETTER

EQUIPMENT TYPE: 216C-1 Recording Amplifier
MODULE AFFECTED: Cue Tone Oscillator
SUBJECT: Compatibility with 642A-2
The $216 \mathrm{C}-1$ as wired is not compatible with the 642A-2. If it is desired to use the 216C-1 with the 642A- $\%$ minor wiring changes are required. They are as follows:

1. Remove the shielded Cue Output from pins 7 of $J 402$ and connect to pin 2 of $J 402$.
2. Remove the lead of C432, I If capacitor, from pin 4 of $K 401$ and connect to pin 7 of J402..
3. Run a wire from the junction of R $\frac{1}{4} 70-\mathrm{R} 460-\mathrm{C} 43 \mathrm{it}$ to pin 4 of K 401 .
4. Examine all changes for cold solder joints or shorts.
5. If the interconnect cable used between the $216 \mathrm{C}-1$ and the $642 \mathrm{~A}-2$ does not have a wire between pin 2 of J10l on the 642A-2 and J402 of the $216 \mathrm{~A}-1$, install a wire. C

TO USE A 216C-1 WITH A $642 A-2$, CHG C106 TO A 50 MFD/ 450 VOLT CAPACITOR. ADD A JUMPER BETWEEN J|O|-2. AND $\mid 1$.

Figure 7-1. 216C-1 Recording Antulifier, Schematic Dingram

[^0]: * 6.3 volts a-c between pins 4 or 5 and 9

[^1]: *Standby
 **Record
 ***Cue Record

